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Abstract

The calculation of Madelung constant for a crystal is actually a conditionally
convergent series and thus tricky to evaluate. Here we have used fractional
charge consideration to create a neutral atmosphere for the reference charge
so that when we calculate Madelung constant the value does not fluctuate
much. Using this method brings small fluctuations in error values for very large
systems but its magnitude is very less on the other hand the sum converges very
fast. We have also calculated Madelung constant values for slightly randomly
distributed lattices and have shown that their energy increases with increasing
disorder. Then lastly we have considered a few non-trivial systems like 3D
lattice with 2D periodicity and calculated Madelung constant for them.

1 Introduction

1.1 Problem Statement and Prior work:

To calculate energy of electrostatic interaction in any ionic periodic structure we need to
know its Madelung constant, which is a quantity that depends only on system structure,
this constant was named after German physicist Erwin Madelung. This quantity, being
a very slowly converging series, is problematic to find out (sec1.2). Through centuries
many people have worked on this and have given many ways to find out, one very accurate
method is to use mathematical substitution but that approach is limited in a way that
we cannot use that method if the system is not ideal. Then for real crystals Ewald gave
an very useful method (sec1.3)[5] but this method is mathematically complex and involve
reciprocal space. Very recently many scientists have worked on using direct summation
method to find out Madelung sum, W.A. Harrison[1], Michele Gaio[2], etc have stated
very prominent ways to calculate this sum. We have used a way that has been spoken
of in many published materials, that is to use fractional charges on ions. Our method
has been explained elaborately in section 3, and the results are presented thereafter. We
have used as many illustrations as we could.

1.2 Ionic Crystal:

When a solid is built of periodic structures of positive and negative ions it is called an
ionic crystal, the bonding in this type of solids is of coulombic nature. The ionic crystal
energy is mainly (i.e. more than90 %) the electrostatic energy of the the constituting ions.
This energy for ’N’ no of ions is given by-

E =
−Nαq2

4πε0a
(1)

ε0 is the permeability of vacuum
’a’ is the nearest neighbour distance between positive and negative ions
’q’ is actually Ze, where e is the electronic charge and Z is the valency of the ions. Here α
is the Madelung constant, considering the form of electrostatic potential, α is expressed
as-

α =
N∑
i=1

±Zi
ri

(2)

Where N is the number of ions in the system and ri is the distance of ith atom from
the reference charge and ±Zi comes from the positive and negative ions in the crystal.
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Figure 1: Ionic crystal: periodic structure of positive and negative ions.
picture taken from www.docbrown.info

Here we have assumed the crystal to be infinitely large (N → infinity) so that the sum
(eq 2) gives same value for all the ions, that is how we can express the total energy as
N multiplied by interaction energy for one ion in the crystal. Madelung constant values
only depend on the crystal structures of the ionic solid more explicitly, how the ions are
distributed in a crystal with respect to each other. The calculation of Madelung constant
always had a numerical issue as stated below.

1.3 Madelung constant the conditionally convergent series:

The series- limN→∞
∑N

i=1
1
ri

is a divergent series called Harmonic Series, but in case of
Madelung constant, we have a series with alternative plus-minus terms which is the
alternating harmonic series. This series fortunately a conditionally convergent one, can
be evaluated by direct summation of the terms but its convergence is very slow in reality.
Also as the total charge in the system which is considered to calculate the sum, fluctuates
more and more as we to larger and larger systems (fig. 2). For this reason the calculated
Madelung constant values fluctuate too (fig. 3).

Figure 2: Oscillation of charge in a 2D square lattice
where the systems are considered as circular areas

Figure 3: Oscillation of Madelung constant values
for the above stated system
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1.4 Ewald summation and direct calculation of Madelung constant:

To calculate Madelung constant and energy of the solid, the most used method is the
Ewald summation method which replaces the

∑N
i=1

±1
ri

by two rapidly converging series

[5] namely s1 and s2 where-
1

r
= s1 + s2 (3)

s1 =
erfc(pr)

r
(4a)

s2 =
erf(pr)

r
(4b)

erfc and erf are complementary error function and error function respectively
p is a constant which determine convergence rate of the two sum values
And we have

erfc(x) + erf(x) = 1 (5)

Then the summation is evaluated in real space for s1 and in fourier space for the s2 series.
This mathematically more complex and difficult to program method can be replaced by
the direct summation method without compromising the sufficient accuracy of the result.
In fact in direct summation we can achieve the result with less than 1% percentage error
in conveniently small time using a modern day laptop and the program codes become
very simple too.
In this context W.A. Harrison [1] and others [2][3] have made considerable improvements
in direct calculation of Madelung constant for various types of lattices.

2 Processes Used to Calculate Madelung Constant :

2.1 The Fractional Charge Consideration:

The value of Madelung constant is evaluated here with direct summation method using
a modification which can be named as Fractional Charge Consideration. The idea is to
assign fractional charge values to the ions on the boundary to make the system electri-
cally neutral. Also the system grows in cubic manner (square in 2D) i.e. sum is done
on expanding cubes and the convergence of the sum value is investigated. An simple
illustration is given here-
According to the picture the corner ions in a square lattice has 1

4
charge and the ions on

the edge has 1
2

charge, but the ion inside the lattice charge is assigned to be one. For 3D
lattice the ions on the boundary surface has 0.5 charge, and those on the edge has 0.25
charge and the eight corner ions has 0.125 charge.
This way of assigning fractional charges to ions also can be understood by finding out
the actual co-ordination number of the ions in the system. The numbers are not same for
all the ions. For example if we consider a simple cubic lattice(NaCl), the co-ordination
number for all the ions is same, its 6. But this system is infinitely large unlike the systems
used in our calculation. So for our finite systems the co-ordination numbers are like this-
For corner ions it is 3
For the ions on the boundary surface it is 5
For the ions on the twelve edges it is 4
For the ions totally inside the crystal it is 6.
Now when we calculate Madelung constant with respect to a point in the lattice , we
consider the unit cell (U0) containing the point of reference to be at the origin of the

3



Figure 4: Fractional charge consideration: fractional charges assigned to
the ions on the boundary

co-ordinate system and we number all the cells starting from U0 which is numbered as
(0,0,0). When we take a cell numbered (x,y,z), we define the distance between these two

cells as ~R. Also for each cell the eight ion positions (for NaCl) are all well defined, we
take them as ~r1, ~r2 etc, they are measured from the origin of the co-ordinate system which
is attached to that (x,y,z) cell. Then distance of reference ion from any ion in (x,y,z) cell
is defined as-

~di = ~R + ~ri (6)

where i goes from 1 to 8 considering all the ion positions of the unit cell (fig.5). Now if we
calculate Madelung constant using this method, considering all the unit cells of our finite
system, its clear that every ion totally inside the crystal will be shared by 8 enclosing
cells so considered 8 times, 8∗ qi

di
but we know that one ion must be considered once only,

so to balance the sum we assign 0.125 charge to every ion in the system. Due to this we
can realize now that the ions on the boundary will have fractional charges. It will be like-
Ions on the boundary surface will be shared by 4 unit cells so they will bear (4*0.125=)0.5
charge.
Ions on the edges will be shared by 2 unit cells so they will bear(2*0.125=) 0.25 charge.
The eight ions in the corner will be shared by only one cell each so the charge value
assigned for them is 0.125.
An illustration-
For the above figure two unit cells are taken to show how the distance is calculated in
3D simple cubic case. Here
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Figure 5: Calculation of Madelung constant using fractional charge: P1
is reference ion and P2 is the ion which is at the origin of cell (x,y,z)

~di = ~R + ~ri (7a)

~r1 = 0 (7b)

~r2 =~i (7c)

~r3 = ~j (7d)

~r4 = ~k (7e)

~r5 =~i+~j (7f)

~r6 =~i+ ~k (7g)

~r7 = ~j + ~k (7h)

~r8 =~i+~j + ~k (7i)

r1 is zero because P2 is the origin of co-ordinate system attached to U(x,y,z)
All the distances from the reference charge to each atom is calculated in this way. We
just did calculate the first quadrant terms and summed them as multiplied by eight, we
could do that due to the symmetric nature of the crystal [1].

Madelung constant =
N∑
i=1

Si where (8a)

Si = 8× s1 (8b)

s1 = sum evaluated in 1stquadrant (8c)

That was the main idea of fractional charge consideration.

2.2 The spherical Shell Consideration:

This idea is fairly simple, we take the system to be a sphere and we include ions on or
inside the spherical surface (fig. 6).
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Figure 6: Spherically expanding shells: systems for calculating the
Madelung sum

Actually to use this type of system effectively we have to find out spheres where the total
charge contained is zero, otherwise the Madelung constant values will fluctuate (fig.3).
In W. A. Harrison’s paper [1] he used compensating charges to make the system neutral
but here we have separately found out those spacial spheres where naturally the sphere
does not contain any total charge (i.e. no of negative ions and positive ions are the same)
and then performed the sum to find out Madelung constant.
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3 Madelung Constant in One Dimension:

3.1 Calculation on Regular Lattice:

Finding out Madelung constant in one dimension is trivial. The sum is given by-

MC =
N∑
i=1

±1

ri
where (9a)

ri = xi (9b)

Figure 7: Madelung constant for a one dimensional system

here the sum was calculated up to system size L = 400, and the value converged at
1.3863

3.2 Calculation on Disordered Lattice:

To make calculations on disordered lattice we have introduced a small random deviation
of the ions from their regular position in the lattice. The values for a maximum possible
displacement 10% of the nearest neighbour distance were investigated and the mean of
the 1000 Madelung constant values calculated was found to be 1.36077. We have also
presented a plot (fig.8) of values of Madelung constant with increasing disorder in the
lattice to reveal the nature of the change.

δa
a

Madelung constant
0.05 1.3728
0.1 1.3609
0.15 1.3496
0.2 1.3392

The decreasing value of Madelung constant shows the increase in interaction energy
(eq.1) in disordered lattice.
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Figure 8: Madelung constant for a one dimensional system in with in-
creasing disorder in the system

4 Madelung Constant in Two dimensions :

4.1 Calculation on Square Lattice :

In two dimensions the Madelung sum is given by-

MC =
N∑
i=1

±1

ri
where (10a)

ri =
√
xi2 + yi2 (10b)

We have calculated Madelung sum in both the ways, considering fractional charges in
expanding square systems and in spherical (actually circular as it is in two dimensions)
neutral systems and presented a comparison of these two. Firstly Madelung constant for
square lattice- We can see from the figure.7 that the sum calculated using fractional charge
contribution gives a better convergence. The value of the sum converges at 1.61554 where
the reference value is 1.6155 . Here is two tables containing the important results of the
plots (fig.9 and fig.10)-
For square system using fractional charge consideration:

system size MC* calculated reference value % error
10 1.61449 1.6155 0.0625
20 1.61541 1.6155 0.0055
50 1.61554 1.6155 0.0024
100 1.61554 1.6155 0.0024

For circular neutral systems:
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Figure 9: Madelung constant of a square lattice:
fractional charge method shows better convergence

Figure 10: Exact error in Madelung constant values :
error in very small systems are excluded from figure

radius of system MC calculated reference value % error
11.045 1.52066 1.6155 5.87
20.024 1.56956 1.6155 2.84
49.929 1.59617 1.6155 1.19
101.02 1.60532 1.6155 0.63

So we can say that if we calculate Madelung constant value in increasing square systems
using fractional charge consideration, we get better convergence. The main problem of
using direct calculation methods was the long time it takes to give fairly converged values,
but the method we used needs a very small code and it takes very small time. Here is a
table showing the time taken for running the program (in FORTRAN code) -

*MC is used for Madelung constant for short

size of system (L) Time taken in sec
100 0.0312
200 0.2496
500 2.4024
1000 23.9305

4.2 Rectangular Central Lattice:

We have calculated the Madelung constant for rectangular central lattice type using frac-
tional charge consideration.But one speciality of this lattice is that we must have the sides
of of the rectangle such that the nearest neighbours bear opposite charge, any arbitrary
value for the sides can not represent the lattice. We have done a simple calculation for
that-

c =
1

2

√
a2 + b2 where (11a)

condition c < a (11b)

given a < b it gives (11c)

b <
√

3× a (11d)

9



Figure 11: Madelung constant for rectangular central lattice:

Here ’c’ is the nearest neighbour distance in this case. Here we have computed values
of Madelung constants for a < b <

√
3 × a taking a = 1.0 .From the values (table) we

have noticed that at the limit b −→ a the sum value almost converge to the sum value for
square lattice.

a b Madelung constant
1.0 1.005 1.61463
1.0 1.1 1.55327
1.0 1.2 1.47029
1.0 1.3 1.37093
1.0 1.4 1.25409
1.0 1.5 1.12391
1.0 1.732 0.76544

At the limit b −→
√

3 × a the Madelung constant becomes very low, that means the
structure have a high energy (eq 1) thus it likely to be unstable and may be physically
unrealizable.

5 Madelung constant for three dimensions:

5.1 Calculation in Regular Lattice :

In 3D Madelung sum is given by-

MC =
N∑
i=1

±1

ri
where (12a)

ri =
√
xi2 + yi2 + zi2 (12b)
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We have calculated this sum in expanding cubic system by assigning fractional charges
and compared it with the sum calculated in expanding spherical systems considering the
neutral spheres only. Here are the plots of those results-

Figure 12: Madelung constant of a simple cubic lat-
tice: in expanding neutral spherical systems

Figure 13: Madelung constant values of a simple cu-
bic lattice : in expanding cubic systems using frac-
tional charges on boundaries

Here are the tables containing important data for simple cubic system using fractional
charge consideration:

system size MC calculated reference value % error
10 1.7475 1.747564 0.0036
20 1.7475 1.747564 0.0036
50 1.7479 1.747564 0.0192
100 1.7492 1.747564 0.0936

We have also calculated the the sum for simple cubic in a slightly different manner and
tested the convergence for very large systems also ( up to system size 1000× 1000× 1000
). The data table is shown below-

n MC calculated reference value % error
01 1.456029 1.747564 16.6823
02 1.751768 1.747564 0.2405
05 1.747498 1.747564 0.0037
10 1.747599 1.747564 0.0.0020
20 1.747593 1.747564 0.0016
50 1.748455 1.747564 0.0509
100 1.750908 1.747564 0.1913
200 1.747571 1.747564 0.0004
300 1.747252 1.747564 0.01785

Where system size, L = 2×n (i.e. the system is L×L×L). As we can see from the result
that the percentage error has a fluctuating trend but it is important to note that the error
never exceeded 1% even when it was calculated for a system as large as 600× 600× 600.
From the papers of Michele Gaio et al [2] and W. A. Harrison [1] its clear that if the
error in the value of Madelung constant is less than 1% then it is sufficient enough to use
that value for energy calculation. The reason is the fact that energy of a ionic solid is not

11



totally the coulomb interaction energy, the short range repulsive potential also contribute
in the total energy of the solid.
The form of repulsive potential is given by-

Vrep =
β

rn
where (13a)

β = repulsive co− efficient (13b)

’r’ is the distance between two ions and ’n’ is the Born exponent (value of n is in the
order of 10). Due to this reason and other uncertainties W. A. Harrison in his paper [1]
has suggested that it is enough if we limit our calculation of Madelung sum up to systems
where L = 300 × a. Below we have presented a comparison of the results obtained by
our method and by M. Gaio and W.A. Harrison [2][1].

n* Our values % error M. Gaio[2] % error Harrison[1] % error ref. value
10 1.747599 0.0.0020 1.7505 0.1680 1.6650 4.7245 1.747564
20 1.747593 0.0016 1.7483 0.0421 1.7826 2.0048 1.747564
50 1.748455 0.0509 1.7477 0.0077 1.7525 0.2824 1.747564
100 1.750908 0.1913 1.7476 0.0020 1.74 0.4328 1.747564
300 1.747252 0.01785 1.7476 0.0020 1.7457 0.1066 1.747564

Here this ’n’ is a measure of system size, n = L
2
. We have presented a plot of the three

methods (fig 14). Though we have found our sum value to be fluctuating by small amount
at very large systems, still at smaller systems our method provide with a very high rate
of convergence (fig 15) , in this aspect our method gave better results than the referred
methods in [1] and [2].

Figure 14: Madelung constants calculated by our method and in ref[1]
and ref[2] :
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Figure 15: Percentage error in Madelung constant calculated by our
method in lower system sizes :

The time taken to calculate Madelung sum in a 3D simple cubic lattice using fractional
charge consideration by a laptop computer is given here.

size of system (L) Time taken in sec
40 0.0312
100 0.0780
200 0.6552
300 2.2308
500 10.5300

We can surely say it is fairly fast.

5.2 Calculations on Disordered Lattice:

We have introduced a deviation of the ion’s position from the regular simple cubic lattice
by a maximum 10 % of the nearest neighbour distance and calculated Madelung constant
more than 10,000 times and found the mean Madelung constant for disordered simple
cubic lattice to be 1.74618 , which is less than the ordered lattice MC value. We have
presented a table and its plot showing this change in MC values with increasing disorder.

δa
a

Madelung constant
0.03 1.74757
0.05 1.74711
0.1 1.74618
0.2 1.74128

We can see (fig.16) that with increasing disorder in the lattice the MC values are decreas-
ing and from the energy expression (eq.1) it is evident that the energy of the disordered
systems are greater than the regular systems. This result also support the fact that liq-
uids (like molten NaCl : disordered system) contain more energy than solid (crystallized
NaCl), that is why we need to provide energy to change a solid into liquid (i.e. to bring
disorder into the system).
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Figure 16: Madelung constant values with increasing disorder in lattice:

5.3 BCC Lattice:

The BCC lattice gives two different Madelung constant values if we consider two types of
ions as reference point in calculation. We get the actual value if we take average of these
two values . This happens because two types of ions in BCC (say CsCl, Cs+ and Cl−)
sense different environments around them[3]. Table shows values we got in increasing
cubic systems and the respective percentage errors.

system size MC calculated reference value % error
10 1.756813 1.7627 0.3339
20 1.758072 1.7627 0.2625
50 1.758353 1.7627 0.2466
100 1.758847 1.7627 0.2185

Graphical representation of the above results are given in (fig.17 and fig.18). All the
calculations are done considering the fractional charges on ions. The results are within
1% error so we can conclude that the fractional charge consideration can be applied to
lattices other than the simple cubic.
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Figure 17: Madelung constant of a body center cubic
lattice: in expanding cubic systems

Figure 18: Percentage error in Madelung constant
values of a body center cubic lattice

5.4 Calculation on a 3D body with 2D periodicity:

Plate Like Structure: The idea is to span the lattice in X (Lx) and Y(Ly) direction only
restricting the Z (Lz) direction growth.The MC values was noticed to converge to usual
3D simple cubic lattice values with increasing Lz values. Lx = 100,Ly = 100 .

Lz Madelung constant
1 0.841162
2 1.682328
4 1.748332
6 1.747568
8 1.747570
10 1.747579
20 1.747584

Stick Like Structure: Here we increase Lx and Ly from small values and see the effect on
Madelung constant values. Lz = 100.

Lx, Ly Madelung constant
2 1.595352
4 1.748923
6 1.747542
8 1.747565
10 1.747556

Plot of the values gives us (fig.19) and (fig.20).
As we expected the Madelung constant values for two systems converged to simple cubic
MC value 1.7475 as their size increased. But at low values of Lz and Lx, Ly both the sys-
tems gave very different sum values, which indicate the probable change in their physical
properties when we take plate or stick like systems of bulk materials.
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Figure 19: Madelung constant of a plate like struc-
ture:

Figure 20: Madelung constant values of a stick like
structure:

We also checked that for plate like system keeping Lz low, increasing Lx and Ly
does not have any significant effect on the sum value. This shows consistency with our
understanding of Madelung Constant, validate our results too.
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6 Summery and Conclusion:

We have used a method, the fractional charge consideration to calculate Madelung con-
stant of various lattice systems in all three dimensions and compared our findings with
standard results and recent publications and our values were within sufficient error limit.
We have observed that the advantage of using our method is the fast convergence rate of
it and the disadvantage is the oscillation of error values with very small amplitude at very
large systems. We could not investigate it fully and properly but from judging the nature
of this error in many systems we can point out a probable reason for this peculiarity that
is the local imbalance of charges due to fractional charge consideration in larger systems.
Some modification of the method can be done in large systems to stabilize this charge
imbalance.
Secondly we have calculated Madelung sum values for slightly disordered lattice and our
findings were supported by the fact that this disorder increases energy of the system.
Actually the system energy was found to increase with increasing disorder ,however we
restricted the disorder up to maximum 20% of the nearest neighbour distance, to preserve
the co-ordination number of ions and other details of the regular lattice. Then we have
investigated some non-trivial cases where the system is in 3D but the periodicity is only
restricted to one and two dimensions. We observed interesting results in plate-like and
stick-like structures, the Madelung constant values found was not like 1D nor like 2D. We
also justified our codes and methods by observing that if we increase the system size in
the previously restricted directions, the Madelung constant values converge to the trivial
3D lattice values. Same kind of results were noted for a 2D system with 1D periodicity
also.
we firmly believe that using fractional charge distribution, a lot more things can be ac-
complished. A few promising ideas that we could not verify properly due to circumstances
are listed here. We can calculate energy change in ionic solid due to point defects in the
lattice, the disordered lattice calculation was the first step towards that. Similarly change
in Madelung constant value due to substitution with ions with same valency but differ-
ent size (like Na+ with K+) can be calculated. With help of self avoiding random walk
we can also calculate the Coulombic interaction energy in a gel where the constituent
molecules are long chain organic molecules with ionic parts attached.

7 Main FORTRAN codes used in project:

7.1 Code for calculation of Madelung constant for 3D simple cubic lattice:

c PROGRAM TO CALCULATE MADELUNG SUM OF A SIMPLE CUBIC LATTICE

c USING FRACTIONAL CHARGE CONSIDERATION :

c TIME MEASUREMENT

real etime

real elapsed(2)

real total

real a,b,d,sum,charge,r1(1:3),r2(1:3),factor

real centreQ

integer i,j,k,n,cell,x,y,z,count,sign1

open(unit=31,file=’nacl.txt’)
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c NORMALISATION W.R.T. NEAREST NEIGHBOUR DISTANCE

factor=1

write(*,*)factor

c DEFINITING SYSTEM SIZE L=2*n

n=250

c MAIN CALCULATION PART

sum=0.0

count=0

centreQ=1.0

cell=(2*n)**3

do 10 x=0,n-1

do 11 y=0,n-1

do 12 z=0,n-1

count=count+8

r1(1)=1.0*x

r1(2)=1.0*y

r1(3)=1.0*z

c FRACTIONAL CHARGE CONSIDERATION LOGIC

do j=1,8

if(j.eq.1) then

r2(1)=0.0

r2(2)=0.0

r2(3)=0.0

sign1=(-1)**(x+y+z)

charge=sign1*0.125

endif

if(j.eq.2) then

r2(1)=1.0

r2(2)=0.0

r2(3)=0.0

charge=(-sign1)*0.125

endif

if(j.eq.3) then

r2(1)=0.0

r2(2)=0.0

r2(3)=1.0

charge=(-sign1)*0.125

endif

if(j.eq.4) then

r2(1)=0.0

r2(2)=1.0

r2(3)=0.0

charge=(-sign1)*0.125

endif

if(j.eq.5) then
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r2(1)=1.0

r2(2)=1.0

r2(3)=0.0

charge=sign1*0.125

endif

if(j.eq.6) then

r2(1)=1.0

r2(2)=0.0

r2(3)=1.0

charge=sign1*0.125

endif

if(j.eq.7) then

r2(1)=0.0

r2(2)=1.0

r2(3)=1.0

charge=sign1*0.125

endif

if(j.eq.8) then

r2(1)=1.0

r2(2)=1.0

r2(3)=1.0

charge=(-sign1)*0.125

endif

d=sqrt((r1(1)+r2(1))**2+(r1(2)+r2(2))**2+(r1(3)+r2(3))**2)

if(d.NE.0) then

sum=sum+(8.0*centreQ*charge*(1/d))*factor

endif

end do

12 continue

11 continue

10 continue

c OUTPUT OF RESULT:

write(*,*)n, sum

total = etime(elapsed)

print *, ’End: total=’, total, ’ user=’, elapsed(1)

stop

end

7.2 Code for calculation of Madelung constant for 2D square lattice:

c CODE FOR CALCULATION OF MADELUNG CONSTANT FOR

c 2D SQUARE LATTICE :

c ELAPSED TIME CALCULATION
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real etime

real elapsed(2)

real total

real d, sum, qT,n,charge,sign

integer i,j,k,r,Q

Q=1

c OPEN OUTPUT FILE

open(unit=21,file=’fractional_charge.txt’)

sum=0

c CHANGING SYSTEM SIZE L=2*k

do 6 k=1,250

c MAIN CALCULATION

do i=-k,k

do j=-k,k

r= i*i +j*j

d=sqrt(1.0*r)

sign=(-1.0)**(i+j)

charge=1.0*sign

c FRACTIONAL CHARGE CONSIDERATION LOGIC

if(d.GT.0) then

if(abs(i).EQ.k) then

charge=0.5*sign

endif

if(abs(j).EQ.k) then

charge=0.5*sign

endif

if((abs(i).EQ.k).AND.(abs(j).EQ.k)) then

charge=0.25*sign

endif

sum=sum+1.0*charge*Q*(1/d)

endif

end do

end do

c WRITING OUTPUT FILE

write(21,*)2*k,sum

sum=0

6 continue

total = etime(elapsed)

print *, ’End: total=’, total, ’ user=’, elapsed(1)
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stop

end

7.3 Codes for sum on non-trivial systems:

c CODE FOR CALCULATING MADELUNG CONSTANT IN PLATE-LIKE OR

c STICK-LIKE SYSTEMS:

real a,b,c,d,charge,sum

integer i,j,k,k1,sign,n

open(unit=21,file=’fractional_surface.txt’)

c SYSTEM SIZE ALONG Z DIRECTION 2*n

n=1

c SYSTEM SIZE IN OTHER DIRECTIONS 2*k1

k1=200

sum=0.0

do 10 i=-k1,k1

do 11 j=-k1,k1

do 12 k=-n,n

sign=(-1)**(i+j+k)

d=1.0*sqrt(1.0*(i**2+j**2+k**2))

charge=1.0

if(d.NE.0) then

c FRACTIONAL CHARGE LOGIC

if((abs(i).EQ.k1).OR.(abs(j).EQ.k1).OR.(abs(k).EQ.n)) then

charge=0.5

endif

if((abs(i).EQ.k1).AND.(abs(j).EQ.k1)) then

charge=0.25

endif

if((abs(j).EQ.k1).AND.(abs(k).EQ.n)) then

charge=0.25

endif

if((abs(i).EQ.k1).AND.(abs(k).EQ.n)) then

charge=0.25

endif

if((abs(i).EQ.k1).AND.(abs(j).EQ.k1).AND.(abs(k).EQ.n)) then

charge=0.125

endif

sum=sum+1.0*charge*sign*(1/d)

endif
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12 continue

11 continue

10 continue

c OUTPUT

write(*,*)k1,sum

stop

end

7.4 Code for calculating Madelung sum in disordered lattice: 1D

c CODE TO CALCULATE MADELUNG SUM IN DISORDERED LATTICE:

c INITIALISATION OF RANDOM NUMBER GENERATOR

real a,b,c,d(-100:100),sign,charge,sum,x,del

integer i,j,k,l,sign1

integer*4 timeArray(3)

call itime(timeArray)

i=rand(timeArray(3))

del=0.6

open(unit=22,file=’random_1D.txt’)

c NO OF RUN 20000. AVERAGED OVER THIS NO OF MC VALUES

do 10 k=1,20000

c SYSTEM SIZE

do 12 l=-100,100

c RANDOM NO GENERATED

x=del*rand()

sign1=abs(3*rand())-1

d(l)=abs(l)+sign1*x

12 continue

sum=0.0

do 11 j=-100,100

if(j.NE.0) then

sign=(-1.0)**j

charge=1.0

if(abs(j).EQ.100) then

charge=0.5

endif

sum=sum+1.0*sign*charge/d(j)

endif
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11 continue

c OUTPUT

write(22,*)-sum

10 continue

stop

end

8 Appendix:

8.1 Random number generator

We have used a library function defined random number generator, using ’time array’
outputs as feeds. Here we have shown the uniformity of the used generator.

Figure 21: Uniform random number generator: total 10000 random vari-
ables used

8.2 Frenkel defect in 2D square lattice:

We have presented a few values from the Frenkel defect code we developed, the pairwise
point defect. n is no of defects in the crystal
n=1% of total ions

n Madelung constant
118 1.504043
116 1.333160
111 1.411336

n= 2% of total ions

n Madelung constant
208 1.751187
210 2.439424
188 1.109287
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