
§7. DFT approach.

7.1 Kohn-Sham-Hohenberg approach (DFT theory)

We start consideration from Hartree-Fock (HF) method and formula for total energy calculation in ground state :
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The Coulomb part of the total energy is sometimes called the Hartree energy  EH.  The exact many-particle wave
function Ψ(r1,r2,…,rN) must be represented by one-electron functions in combination with the Slater determinant (to
satisfy Pauli exclusion principle). The one-electron functions can be found from corresponding equation:
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This is the so-called non-local exchange potential. "Non-locality" is due to the fact that this potential depends on the
position of a given electron relative to the position of all the others. Hartree potential can be found from classical
Poisson equation :

ΔV H=−n(r) (4)

And  the electron density is calculating by this way
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The HF method gives a ready to use  scheme to calculate any physical properties of many-particle systems

such as molecules, atoms, solids . It is important to emphasize that this method ignores one multi particle effect.
Representing an exact many-particle function as a combination of one-electron functions leads to the loss of many-
particle correlation effects in a physical system. To correct this situation, it is necessary to include an additional
correlation potential energy to the corresponding Schrodinger equation Vc. 
While this approach is useful, it has some important drawbacks. To calculate the energy in the ground state, one has
to  operate  with  a  large  number  of  individual  particles  and,  accordingly,  coordinates  and  wave  functions.
Calculations require large computer resources and can only be performed on supercomputers, even for a simple
systems. The breakthrough came after the presentation of the Kohn-Sham-Hohenberg(KSH) or Density Functional
theory(DFT). The DFT can be called by exactification, development and simplification of HF theory.  

The basis of DFT presented in Kohn-Sham theorems and corollaries:

 Coulomb electron-electron repulsion (Uee )
Interaction of electrons and nuclei

Kinetic energy of an electrons
 Nonclassic exchange energy

 

relationship between equations



Theorem 1. The external potential (and hence the total energy), is a unique functional of the electron density. If two
systems of electrons, one trapped in a potential V1(r)  the other in V2(r) , have the same ground-state density n(r),
then  V1(r)-V2(r)  is necessarily a constant.

Corollary 1:  The ground-state density uniquely determines the potential and thus all properties of the system,
including the many-body wavefunction. In particular, the KSH functional, defined as , is a universal functional of
the density (not depending explicitly on the external potential).
Corollary  2:  In  light  of  the  fact  that  the  sum  of  the  occupied  energies  provides  the  energy  content  of  the
Hamiltonian, a unique functional of the ground state charge density, the spectrum of the Hamiltonian is also a
unique functional of the ground state charge density.

Theorem 2.The functional that delivers the ground-state energy of the system gives the lowest energy if and only if
the input density is the true ground-state density. In other words, the energy content of the Hamiltonian reaches its
absolute minimum, i.e.,  the ground state, when the charge density is that of the ground state. For any positive
integer and potential, a density functional exists such that reaches its minimal value at the ground-state density of
electrons in the potential. The minimal value of is then the ground-state energy of this system.

It means that for ground state the total energy of system can be calculated by using only electron density
function defined in all points of space (5).  Knowledge of this function allow to recover the multi-particle wave
function  and potential  energy function   for  nuclei  and viceversa.  The DFT approach  is  strongly  simplify  the
calculations for ground state of crystals  because  instead of large  system of  wave functions defined at all points of
space we need to use only one function (electron density n(r)). But what does the density functional of energy look
like? Lets start from (1):
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First  of  all  in  framework  of  DFT the  exchange  and  correlation  energies  should  be  combined  into  exchange-
correlation (EX)  energy (potential) Ex+Ec=Exc  and for corresponding  operators V̂ xc=V̂ c+ V̂ x . We will talk about
EX later.

The expression for kinetic energy (I) through  electron  density function can be taken from theory for free

electrons where kinetic energy is proportional to  Ekin∼n
5
3 .

In second (II) and third (III) terms the wave functions and sums can be directly combines to density function (5).

After combination we have:
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Most complicated part related to Exc energies. We start from exchange Ex contribution. The exchange energy in HF
approximation is looks like this:
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This equation can be represented  in DFT representation by using model of free electrons. The wave function for
free electron in 3D space is looks like so:
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In (8) in this case instead of quantum numbers i and j we have to use the wave vectors   k and k’.
After substitution (9) to (8) and change summation by integration  by using relation:
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For zero temperature, the first two integrals should be calculated for points located in k-space inside a sphere with
radius kF (Fermi radius), and the second two integrals should be calculated for the entire volume of the crystal.
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It is clear that  for exchange energy we have the next dependence on density function E x∼ n
4
3 .

Estimation  for  correlation  part  of  total  energy  was  done  through  Monte-Carlo  simulations.  There  is  the  next
approximated formula for correlation energy Ec:
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 Of course it is not the only one possible option for representation of correlation part. Here rs is a radius of sphere
occupied by one electron. The corresponding radius can be calculated from next equation: 
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In the framework of DFT the self consistent calculation cycle is looks like so (step by step):

1. At the beginning we must first define the one-electron wave functions. This can be done in many ways.
Most simplest is present wave functions as a Fourier series:
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We need to define some constraint on the values of the wave vector. This can be done by imposing the following 
constraint on the kinetic energy of electrons in the free electron approximation:
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2. Now the density of electrons can be calculated by using (5).

3. Here can be defined exchange-correlation part of total potential and Hartree part can be found from 
corresponding Poisson equation (4).

4. Now should be created total potential in form:

V tot=V eN+V H+V XC (17)

5. New we need to solve Kohn-Hohenberg equation to calculate new one electron wavefunctions and new density 
function:
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6. If difference between new total energy (7) and total energy from previous SC cycle is less than some Ediff :

|Enew−Eprevious|≤Ediff (19)

 the calculation can be finished  otherwise we go to step  3 . The cycle will end after condition (19) is met.

This method is applicable to different types of simple and complex manyatomic systems. In fact,  most of the
physical  properties,  such as:  structure  optimization,  elastic  constants,  phonon spectrum and related  properties,
optical and magnetic properties, etc. can be numerically calculated. 

Some additional simplification can be made by using only valence (outer) electrons in the calculations. But
this simplification requires the inclusion of internal electrons in the nucleus of an atom and the generation  for this
complex, the nucleus plus internal electrons, of the so-called pseudopotential.
The correct generation of pseudopotential is a separate and complicated task  but for most ab-initio packages it
successfully already done.


