
§6. Hartree-Fock method

We more or less know how to describe the motion on nuclei (in the harmonic approximation).
But what about the electron subsystem?

The adiabatic approximation make possible to reduce the complicated problem of behavior of
an electron-nuclei system to the problem of electron motion in the field of static nuclei and motion of
nuclei in average field of all electrons. However in this case the problem of the motion of all electrons
remains  extremely  complicated  and  require  for  its  solution  some  or  other  approximate  methods.
Unfortunately the all-electrons wave function depends on the position of each electron in crystal (this
number is very big and equal around 1023). Thus, for electrons we have a very complex many-particle
problem which include complicated correlation effects. Methods are needed to simplify the solution of
the problem for electrons.

The first simplification in to present the complex multi-electron wave function of all electrons
(in this case we consider the electrons as united quantum system) as a combination of wave functions
for single electron (one-electron approximation). We consider the electron subsystem as combination of
single, independent electrons. But in this case, we need to take into account in the calculations the so-
called correlation many-particle effects or simply correlations. The calculation for that correlations is
very difficult and nontrivial task.

As always we have to start from Schrodinger equation for electron subsystem:

T̂ e⋅φ+(V en+V ee)φ=E⋅φ
here:
T̂ e−kinetic energyoperator for all electrons
V en−potential energy for electrostatic interactionof electrons and nuclei

V̂ ee− potential energy for electrostatic interactionof electrons

(1)

or expanded option of (1):
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In  the  framework of  adiabatic  approximation  the  nuclei  are  static.  It  means  that  in  (2)  in  vector
ri , J=r i−rJ the term rJ describing the position of nucleus with number J , must be fixed.

The Hamilton operator for equation (2) we can rewrite by follows:
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This Hamiltonian 
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is still describes the many-particle problem, but our goal is to present  it as follow:
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We want to replace the many-body electron problem (3,5) into the one-electron problem (6).
Each electron here is moving in the  field of fixed nuclei and  average field of all other electrons.
Ueff(ri) describe the averaged action of all electrons on the specified electron with number i. And now
we need to find the method to calculate this effective average potential energy.

But there are some problems associated with this transition.  Considering a system of many
particles as a set of independent particles leads to the loss of some important effects associated with
many particles such as multi-particle correlation effects. This means that for real calculations we must
add some additional terms to the one-particle Hamiltonian includes correlation effects:
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The corresponds method (6) have the name Hartree-Fock method. 
Now let's make an additional simplification used in the Hartree-Fock method:

1. we try to calculate electrons properties for ground state. It means that the number of different states
is two times less that the number of electrons (Pauli exclusion principle must be applied).
2. it is often difficult or simply impossible to specify or describe the exact wave function for an n-
electron system (this function must satisfy the Pauli exclusion principle by default). This problem can
be solved by representing the many-electron function as a Slater determinant composed of one-electron
wave functions :
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|
φ i(k ) - wave function for electron with number k located at the state with number i.

To simplify further consideration, we assume that system have only  two electrons distributed
over two states. At the beginning, we ignore the electron spin. It means that the number of occupied
states is equal to number of electrons and equal to 2. As we will see later, these calculations will be
extended to any number of electrons.

The wave function of this system (according with the Pauli exclusion principle) is looks like
this:
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This representation guarantees the antisymmetry of the
wave function and the impossibility of simultaneously
location of two electrons in the same state.

The  total  energy  of  ground  state  of  the
system of two electrons calculate so:
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If  we  assume  that  the  one-electron  functions  are
orthonormal:
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φk dv=δ ik (10)

The integral below (9) is equal to 1 (Proof it!).
For upper expression we have:
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The Hamiltonian for our system of two electrons in ground state is looks like so:
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The individual Hamiltonians Ĥ1and Ĥ2  can be written as follows:
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The total multiparticle wave function we take from (8). The integrals in (14) can be calculated 
separately.
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After opening brackets we will obtain 4 integrals:
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After combination upper integrals the final results is:
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The second integral in (14) can be calculated by same way:

∫Ψ
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The sum of two first integrals gives:
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(2) Ĥ2 φi(2)dv2 (18)

The last two integrals (18) differ only in the integration parameter. In both integrals, one must integrate 
over the entire volume of the crystal. This means that the integrals are equal, and the final result looks 
like this:
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Now we need to calculate the coulomb contribution to the total energy:
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This integral can be calculated in the same way, separately:
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Integral (I) gives the potential energy of the Coulomb interaction for the first electron in the first state 
with the second electron in the second state. 

Integral (II) is a Coulomb interaction for the first electron in the second state with the second 
electron in the first state.

Integrals II and IV have no classical analog, they are purely quantum terms. They describe the
interaction of electrons in mixed states. The corresponding interaction is a so called exchange energy.
After combination (19) and (21) for total energy of two-electron system in ground state we have :
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The summation is over the occupied states. Important to understand that (22) is not an sum of energies
for  noninteracting  electrons,  because  wave functions  φi  are  not  an eigenfunctions  of  one-electron
hamiltonian (13) Hi. 

Now we have two questions about calculation of functions  φi and effective potential energy Ueff

describing the average field created by all other electrons (exclude the electron with number i). The
(22) can be considered as a functional of energy with respect to wave function.  A small variation in the
wave function φi -> φi +δ φi leads to a small variation in the total energy δE. 
Orthonormal property of varied functions  φi +δ φi  (with taken into account (10)) is looks like so:
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Using  variational  principles  and  the  fact  that  we are  looking  for  the  energy  for  the  ground  state
(minimum energy) and the corresponding wave function in that state, the final equation for calculating
 φi  and E is looks like so:
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The mathematical details of calculations you can find in textbook “A. Anselm, “Introduction to the
theory of semiconductors”. 

The comparison (24) with (6) give the expression for calculating the effective potential energy 
for one-electron task:
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The equations (24) is a Hartree-Fock self-consistent field equations. Since (25) itself depends on wave
functions φi, the equation (24) is a system of integro-differential equations. 

The solution of this problem can be presented as follows: 
I.     Let's start with a zero approximation for wave functions.
II.   The next step is to calculate Ueff (25) at the same level of approximation.
III.  After that, solution (24) gives the new wave function in the first-level approximation.
IV.  Substituting these new functions into (25), we can calculate the effective potential of the next level
of approximation, etc.
Now we must go to step III again.

The circle of self-consistent computations can be interrupted if the total energy stops changing
(or will be less than some little number). In this case, we assume that we have a wave function and
energy for the ground state of the electron system in Hartree-Fock approximation. 

It  should  be  noted  that  although  this  method  is  implemented  in  many  so-called  abinitio
computer  programs,  the  process  is  not  really  that  simple.   The  name  abinitio  means  that  at  the
beginning of the calculation we have to determine only the initial positions and types of atoms. This
should be enough to calculate any physical property of any material. 

This  method can be used to  search for new stable  materials  and to calculate their  physical
properties (without experiment). But we cannot start the calculation from random initial positions of
atoms in the crystal lattice. For unstable structures, the self-consistent calculation by the Hartree-Fock
method loses stability and diverges, the calculated energy tends to infinity. Of course, a stable initial
structure can be determined experimentally if it  is known. But to search for completely new stable
materials  with  before  unknown  physical  properties,  you  need  to  use  the  following  packages:
https://uspex-team.org

Another disadvantage of this method is that it  requires large computer resources. Therefore,
another approach (DFT, despite its imprecision) is often used for preliminary calculations.

PS! In the Hartree-Fock method, we have non-interacting electrons moving in the field of stationary
nuclei and in the meanfield (25) created by all other electrons. The meanfield consist from classical
Coulomb potential and non-local exchange potential.


