
§5.7 Transport phenomena.

Let’s start from metals. Metals is a good conductor due to large number of free electrons. For example in sodium  
this number id around 1021cm-3. But do not forget that for room temperature, the real number of active free elec-
trons  is about 1% of their total number. 

§5.7.1 Classic approach.

The classical equation for density of current is:

j=q⋅n⋅v=σ E or in matrix form jα=σ α ,β Eβ (1)

Here q-charge of the carrier of current , n-concentration of carriers, v-mobility of carriers, σ-conductivity tensor 
of a material. Resistance can be calculated using the well-known equation:

R=ρ l
S

,here ρ=1/σ −resistivity (2)

From the point of view of classical physics, resistance is associated with the collision of free electrons with atoms  
of the crystal lattice moreover, this effect takes place at any temperature include zero temperature. The elementary  
consideration gives the classical formula for conductivity:

σ =q2τ n
m

, and   ρ= m

q2τ n
(3)

here τ- average time between two successive collisions of electron with atoms. 
Only two parameters can be temperature dependent n and τ. Concentration of conduction electrons n practically 
is constant in metals. The parameter τ, associated with collisions of electrons with atoms, has such a dependence 
due to an increase in the amplitude of thermal vibrations of atoms with increasing temperature. The average time 
can be calculated as the ratio of the minimum distance between atoms and the average thermal velocity of the  
atoms:

τ̄= a

√⟨v2⟩
(4)

√⟨ v2⟩ root mean square velocity which proportional to 
√ T .  The  mean  free  path  in  the  classical  approach 

should be equal to the period of the crystal lattice (the min-
imum distance between atoms). This give the following de-
pendence of resistivity on temperature:

ρ ∝√ T . (5)

But experiment show the linear dependence for a relatively 
high temperature (above 100k) see Figure 26.  Horizontal 
section for temperatures below 50K related to scattering on 
defects of crystal lattice. This means that classical physics 
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do not have a satisfactory explanation of this phenomena. Moreover, the resistance of semiconductors has an in-
verse relationship between resistance and temperature.

§ 5.7.2.1 Quantum mechanics approach for metals.

Electric current arises in metals under the influence of an external electric field, this means that this is a non-
equilibrium phenomenon. An external electric field redistributes electrons in energy, change the distribution func-
tion. In the general case, for the equilibrium state, the electron distribution function (for high temperature) has the  
following form:

f 0(E)=e
μ−E

kT , here E=
m v2

2
+U pot - total energy and μ -chemical potential (6)

The density of current along of x-axis can be calculated by general formula:

j x=−e∫ vx f (v , r ,t )dv x dv y dv z=−e∫ vx f (v , r , t)dv3 (7)

Here f(v,r,t) is non equilibrium distribution function which can be represented as a sum of two terms
f =f 0+ f 1 (8)

here, f0  -distribution function for equilibrium states and f1 - additional term arising due to external influence (non-
equilibrium part). After the substitution to (7) we have:

j x=−e∫ vx f 0(E , v)dv3−∫ v x f 1(E ,v)dv 3=−∫ vx f 1(E ,v )d3 v (9)

The first term must be equal to zero due to f0 is even function (because of kinetic energy is proportional to v^2). 
The derivative of (8) with respect to time is [3]:

df
dt
=( df

dt
)

field

+( df
dt

)
scat

=−v⃗ ∇̂ r f − 1
m

F⃗ ∇̂ v f
⏟

field terms

+∫ { f (v ' , r ,t)W (v ' , v)−f (v , r ,t)W (v , v ')}d3 v '⏟
scattering terms

(10)

W (v , v ' )d3 v dt gives the probability that the electron will be scattered (due to collision) and change its speed 
from v to v' in time dt. The field terms describe changes in the distribution function due to the movement of elec-
trons in the crystal, and the collision term takes into account collisions with atoms and with any lattice defects. In  
stationary state (10) is equal to zero:

v⃗ ∇̂r f + 1
m

F⃗ ∇̂v f =∫ { f (v ' , r ,t )W (v ' , v )−f (v , r , t)W (v , v ')} d3 v ' (11)

(11) is so called kinetic integrate-differential  Boltzmann equation. To determine the function f, it is necessary to 

know the external force F and the scattering probability W(v,v’). After a little simplification: v⃗ ∇̂ r f (E)= 1
kT

( v⃗ F⃗)

and 1
m

F⃗ ∇̂ v f=− 1
kT

( v⃗ F⃗) we get:

f 0∫{W (v ' , v )−W (v , v ')} d3 v '=0 (12)

But it is possible  only if W (v ' , v )=W (v , v ') it means that direct and inverse processes of scattering have the 
same probability. The derivative for collision  term (10) in the elastic collision approximation is looks like this 
[3]:

( df
dt

)
coll

=−f 1∫W (θ )(1−cos(θ ))dΩ (13)

here f1 non-equilibrium part of the distribution function (8), θ - angle of collision, dΩ - solid angle (Figure 1a ).
The unit of the integral is the inverse second, which means that a new parameter can be defined-relaxation time:

1
τ =∫W (θ )(1−cos(θ ))dΩ (14)

The relaxation time multiplied by the average electron velocity gives the well-known parameter - the mean free 
path. After substitution (14) to (13) :

( df
dt

)
coll

=−
f 1
τ =−

f −f 0
τ (15)



If we assume that external force F=0 so:

df
dt
=−

f −f 0
τ (16)

after integration we have:

( f −f 0)=( f −f 0)t=0 e−t / τ (17)

This expression shows that after switching off the disturbing external force(external electric field for example),  
the system tends exponentially to the equilibrium state and during the relaxation time these disturbances decrease 
by a factor of e.  

For practical appreciated cases f0>>f1  (weak external influence) this means that sometimes we can exchange 
f→f0. If on electrons acting only electric field along x axis (Fx=qE  and in (97) Upot =0)  from (11) , (16) and (6) 
we gets:

f 1=−qE
f 0

kT
τ vx (18)

and density of current can be calculated by using formula (9).

j x=( q2

kT
∫ τ (v , T )v x e

(μ−mv2/2)
kT dv3)E=σ E (19)

here σ= q2

kT
∫ τ (v , T )v x e

(μ−mv2/2)
kT dv3 can be interpreted as conductivity of material.  More general expression 

for conductivity tensor looks like following [see 3]:

σ α ,β=−
q2 m3

4π 3ℏ3∫ τ (v )
df 0

dE
vα vβ d3 v and Ohm law jα ,β=∑

β
σ α ,β Eβ (20)

As you can see the conductive properties depends on mechanism of carriers scattering determined by relaxation 
time τ(v,T). From the point of view of classical physics, for an ideal crystal at zero temperature is possible to elec-
trons scattering by stationary atoms located at lattice sites.

But from the point of view of quantum mechanics, the situation is different. If we have a defect-free (ideal, pe-
riodic and  infinity) lattice at zero temperature, scattering of electrons is possible only by immobile atoms. For  
this ideal periodic lattice the electron wave function should be represented in Bloch function form:

φ ( r⃗ )=u ( r⃗ )e i k⃗ r⃗ (21)

here, u( r⃗ )=u( r⃗+ R⃗n) - periodic part of wave function. It is important to emphasize that in this case the crystal  
does not resist the movement of electrons. The resistance of such a material is zero, and it exhibits the property of 
superconductivity. Any destruction of this periodicity (lattice defects, vibrations of an atom, crystal surface) leads 
to the impossibility of representing the wave function of an electron in the Bloch form and to appearance of elec-
tric resistance. In an ideal crystal, the electron as if in resonance with the lattice.

Let’s try to calculate the relaxation time (14) in some simple cases. There is different mechanisms of electrons 
scattering (scattering on impurities, on disorders of lattice, on phonons and on surface), and the relaxation time for 
each case should be calculated separately and can be summated by Matthiessen rule:

1
τ =

1
τ impurity

+ 1
τ disorder

+ 1
τ vibrations

+... (22)

We consider only the interactions of electrons with phonons. The scattering electron by an atom leads to the 
appearance  of  crystal  vibrations  or  phonons  with  momentum  ℏ q⃗ and energy ℏω .  Remember  that  each 
phonon is associated with a corresponding harmonic wave in the crystal or (it is the same) with a corresponding  
harmonic oscillator. The collision of an electron with an atom creates a phonon or, in other words, excites a har-
monic wave (harmonic oscillator) propagating along the crystal (see Figure 27b). The energy of corresponding 
harmonic oscillator in quantum mechanics calculating by the next formula:

E=ℏω
2

(2n+1) , here n∈N can be interpreted as  a number of created phonons. (23)



The quantum mechanical calculation for probability the scattering of electron on phonon-W see formula (11) 
gives (see [3]):

W +=w (q )N q⋅δ (Ek+q−E k−ℏω q)

W -=w (q )(Nq+1)⋅δ (Ek−q−E k−ℏω q) , here w(q)= 4π
9 N

Cq2

M ω q

(24)

N-number of atoms, Nq -  number of phonons with wave 
vector  q,  ωq -  frequency of  this  phonon,  k,k’-wave 
vector  of  electron  before  and  after  scattering.  Here 
considered  two  process:  first  (W+)  —  creation  of 
phonon due to collision of electron with atom  and 
second-(W-) absorption of phonon by electron (Figure 
27b,27c). 

But for phonons everything is not so simple. We 
needs  to  consider  the  acoustic  and optical  phonons 
separately.  

For metals, we only have acoustic phonons (oscil-
lations).  The number of corresponding phonons can 
be  calculated  using  the  Bose-Einstein  distribution 
function:

N q(T )= 1

e
h ν
kT −1

(25)

The dependence of the frequency of acoustic phonons 
on the wave vector q looks like L3/Figure 3. The 
maximal characteristic frequency for metals is around 
1THz. The corresponding dependence (25) from tem-
perature is presented on Figure 27d. In high-tempera-
ture region this dependence is linear and have good 
agreement with experimental data. 

It is clear that the basis contribution to the temper-
ature  dependence  of  materials  gives  low  frequency 
phonons, q≈0 region on   L3/Figure 3.
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§5.7.2.2 Quantum mechanics approach for semiconductors.

The difference between metals and semiconductors lies in the distribution of electrons over the band structure.  
Unlike metals, semiconductors have at least two energy bands. The lower (valence) 
band is completely filled, and the upper (conducting) band is not filled at zero tempera-
ture; a band gap is located between these bands (Figure 28). The energy of electron in 
conduction zone and hole in valence zone is:

Ee=
ℏ2 k2

2me

, E p=−Eg−
ℏ2 k2

2mp

(26)

Zero energy is at the minimum of the conductive zone. The distribution function for 
electrons is a standard Fermi-Dirac function. 

f e=
1

e
Ee−μ

kT +1
(27)

For holes the analogical function can be calculated as following:

f p=1−f e=
1

e
μ−E p

kT +1

= 1

e

μ +E g+
ℏ2k 2

2 mp

kT +1

= 1

e
ℏ2 k2

2 me

−μ
+1

(28)

The chemical potential can be calculated from condition of electrical neutrality of in-
trinsic semi-conductor. Number of electrons in conducting zone and holes in valence 
zone must be the same.

∫
over conducting zone

2g (e) f e(Ee ,T )dE= ∫
over valence zone

2g (e) f p(E p , T )dE (29)

The calculation of chemical potential  gives:

μ=−
Eg

2
+ 3

4
kT ln (mp

* /me
*) (30)

I want to remind once more time that Fermi level and chemical potential  do not coincided for semiconductors.  
Fermi level located on the most upper occupied level of valence zone at zero temperature. Instead of real mass we  

need to use effective masses of electron and hole. If me
*=mp

*  the chemical 
potential  in  intrinsic  semiconductor  (the  concentrations  of  electrons  and 
holes are equal) is located in the center of the band gap μ=Eg/2. On Figure 
29 you can see the distribution function for different temperatures. The con-
centration of electrons in conduction zone and holes in valence zone (for 
intrinsic  semiconductor of  course)  are equal  and in classical  limit  (high 
temperature and low concentration of carriers):

n=
(2π √mp me kT )3 /2

4π 3ℏ3 e
−

Eg

2kT=n0 e
−

E g

2 kT (31)

To explain the dependence of the resistivity of a semi-conductor on temper-
ature, one can use the classical expression :

ρ (T )= m

e2 τ (T )n(T )
(32)

The relaxation time τ (T) depends on temperature due to the same scatter-
ing processes as in metals and gives a linear dependence of resistivity on 
temperature. But for semiconductors there is one more phenomenon that 
gives an additional dependence on temperature - this is the concentration of 
carriers. The τ(T) decreases and n (T) increases exponentially with temper-

μ

EF
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ature. On Figure 30 represented the dependence of Si resistivity on temperature. The linear (metal like)depen-
dence can be neglected so for semiconductor we have the next expressions:

 

ρ (T )=ρ 0 e
Eg

2 kT or   ln(ρ (x))=ln ρ 0+
Eg

2k
x , here x=1/T (33)

Calculation Eg using (123) and results taken from Figure 30 gives 1.14eV
(experimental data 1.1 eV ).
NB! The effects associated with scattering (and the linear dependence of 
resistivity on temperature) can be neglected because the exponential func-
tion changes faster than any linear function. 
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