
§ 5.8 Paramagnetic propertioes of free electrons.

Let's start with the classical set of magnetic molecules with a magnetic moment μ0.  The probability that the 
magnetic moment will be directed at an angles region from  θ ,dθ to the magnetic field is (disorder occurs 
due to thermal motion):
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The constant A can be calculated from the normalization of the probability by one:
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The average value of the projection of the magnetic moment on B is:
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.
after integration

<μ>=μ0 L(
μ0H

kT
)  here L is so called Lengaven function

L(α )=coth(α )− 1
α

For low temperature α<<1   this function can be written as L(α)≈α/3. Then for magnetization vector (can be 
calculated as multiplication <μ> and n-concentration of magnetic particles ) we have:
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H (4)

Magnetic susceptibility  χ=M/H=
μ 0

2 n

3 kT
(4a) and corresponds to the Curie law for paramagnetic.

In framework of  quantum mechanics  we need to  take into account  the discreteness  of  physical 
quantities. The magnetic moment of an atom in quantum mechanics is related to the orbital and spin degrees  
of freedom. The magnetic moment of atom then is equal:  

μ j=μ B j g here μ B=
eℏ

2mc
−Bohr   magneton (5)

Physically, the Bohr magneton is equal to the ratio of the magnetic moment to the angular momentum for 
the orbital motion of an electron:
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for spin motion this ratio is two times larger
M s

sz
=2μBℏ . Here j is a quantum number for total magnetic 

moment of  electron:

J⃗=L⃗+ S⃗  and g=1+ j( j+1)+ s(s+1)−l(l−1)
2 j( j+1)

is Lande parameter. (7)

The electron energy in  external magnetic field is equal:

Ep=−μ jH cos(^⃗J H⃗ )=−μBH gm (8)

here m-magnetic quantum number for total momentum J and range of possible  m values is  [-j,…,0,...+j]. 
The average projection of magnetic momentum on external magnetic field in this case is:
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For weak external magnetic field  α<<1  and <μ >=
μ B
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H .

And magnetic susceptibility  χ=
μ 0

2 n
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. This result coincided with classical results and Curie law for 

paramagnetic too. 
It  seems that this approach can be used for free electrons in metals. But experiments give quite 

different results. The magnetic susceptibility for metals does not depend on temperature and is about 1000 
times less than expected. 

To describe the magnetic properties of free electrons, it is necessary to take into account only the 
electron spin. Free electrons can be divided into two parts. The first part  is electrons with spins in the  
direction  of  the  external  magnetic  field.  This  interaction  reduces  the  energy  of  the  electron  and  the 
corresponding magnetic moment can be calculated in this way:

M +=μ B∫ f fd(E−μ bH )G (E)dE (10)

analogically for electrons with opposite spins:

M -=μ B∫ f fd(E+μ bH )G (E)dE (11)

The total magnetic moment 



M=M+-M-= μB∫ { f fd(E−μBH )−f fd(E+μBH )}G(E)dE (12)

for weak magnetic field the Fermi-Dirac (FD) function can be expanded in a series of small H:
.
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It is clear that 2∫(−
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. Exact calculations give us:
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(function G(E) taken from 5.1.1. eq.26)

and   magnetic susceptibility :
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