
§5.6 LAPW and LCAO methods

§5.6.1  LAPW method.

The Linearized Augmented  Plane Wave (LAPW) method  can be applied to simplify the solution of the cor-
responding Schrödinger equation (SE) for periodic (lattices) or non periodical (molecules) structures. The LAPW 
method was developed as a further development of Augmented  Plane Wave (APW) method (Slater ,1937). 

The eigenvalue problem for periodical potential is looks like this:

Ĥ⋅Ψ j=E j⋅Ψ j  here the Hamiltonian Ĥ=T̂ +V (1)

here T̂ -kinetic energy operator, V - periodic potential energy, Ψ j  and E j is corresponding eigenfunction 
and eigenvalue. 

In periodic structures the wavefunction should satisfy to Bloch theorem it means that generally it can be pre-
sented in next form: 

Ψ j( r⃗ , k⃗ )=u j( r⃗ , k⃗ )e
i k⃗ r⃗ (2)

here u j( r⃗ , k⃗ )=u j( r⃗+ R⃗n , k⃗ ) is a periodical part of  the total wavefunction. Due to periodicity of u j( r⃗ , k⃗ ) it 
can be expanded to Fourier series by this way:

u j( r⃗ , k⃗ )=∑⃗
bg

C j
k⃗ ,b⃗ge i b⃗g r⃗ (3)

here C j
k⃗ ,b⃗g - coefficient of expantion and b⃗g - vector of translations  for reciprocal lattice (see lecture 5.2.1).

Another simplification can be applied to the method. This is the so-called Muffin-Tin approximation. Within this 
approximation, the potential V can be divided into two parts. The inner (I) part, where the potential is practically  
described by the potential of an isolated atom. And the interatomic region (MT), where the periodical function  
u j( r⃗ , k⃗ )  can be described in the free electron approximation. The border between these two areas looks like a 

sphere  (MTsp) with radius some RMT. For (2) in this case we have:

Ψ j( r⃗ , k⃗ )={∑⃗bg C j
k⃗ ,b⃗g e

i(b⃗g+k⃗ ) r⃗ for r∈MT sp

∑⃗
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C j
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l=0

lmax

∑
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al ,m
k⃗ , b⃗gR lY l , m⏟

φk⃗ , b⃗g

for r⃗ out of MT sp
(4)

here  Rl  and Yl,m  are hydrogen-like radial and angular wave functions and φk⃗ , b⃗g just additional function to sim-

plify further calculations and include two last sums in equations (4). Formally, the energy of a quantum system 
can be calculated as follows:

E=
∫Ψ* ĤΨdv

∫Ψ* Ψ dv
(5)



After substitution (4) to (5) we get the system of linear equations for coefficients C (instead of differential equa -
tion (1)):

∑⃗
bg

H b⃗ g' ,b⃗ g

k⃗ C j
k⃗ , b⃗g=E j

k⃗∑⃗
bg

S b⃗g ' , b⃗g
k⃗ C j

k⃗ , b⃗g
(6)

Here H b⃗g ' , b⃗g

k⃗ =∫φk⃗ , b⃗g'
* Ĥ φ k⃗ ,b⃗g

dv - matrix elements of Hamiltonian operator Ĥ , and S b⃗g ' ,b⃗g
k⃗ =∫φk⃗ , b⃗g'

* φk⃗ , b⃗gdv is 

so called overlap matrix.  Problem (6) is a system of linear equations for unknown coefficients  C and can be 
solved by standard methods of linear algebra. In pure LAPW approximation (2)+(3) the φ( r⃗ )k⃗ ,b⃗ g'=e

i (b⃗ g+k⃗ ) r⃗ .

In real calculations on a computer, the high optimized  LAPACK library is used for these purposes. There is a 
high effective and free realization of this library for Intel processors so called MKL library and library ACML for 
AMD peocessors.

This method is often used in various abinitio programs for searching for energy and wave functions of the  
electronic subsystem of crystals and molecules. 

It makes sense to note that the number of terms in (3) should be quite large, up to tens of thousands. Such a  
large number is necessary for a more or less accurate representation of the wave function of electrons in crystals.  
In this case, solving problem (6) requires large computing resources and can be completed only using large com-
puting clusters (supercomputers). 

Often the calculated wave function is stored as a set of calculated coefficients C. This coefficients can be used 
to generate a wave function for specific values of the position vector ( r⃗ ) and electron wave vector ( k⃗ ) by us-
ing equations (2) and (3).

Important to emphasize that the knowing the wave function allows  to calculate the physical properties of the  
crystal, such as optical, vibrational, elastic, magnetic, etc.

§5.6.2   LCAO approach.

The Linear Combination of Atomic Orbitals (LCAO) method can be represented as further development of 
the LAPW method and often used in quantum chemistry to calculate properties of molecules. 


