
§5.4 Effective mass approximation

The effective mass approximation is useful to simplify the 
description of the properties of electrons in semiconductors 
and dielectrics.  The main idea is as follows. The general 
Schrödinger equation looks like this:
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Here V - exact periodic potential energy for electrons. The 
result  of  solution  give  the  energy  of  electrons  (set  of 

bands) En(kx,ky,kz). Here n – number of band. As example consider the calculated band structure for Ge crystal 
(Figure 22). Near the maximum and minimum of En(kx,ky,kz), this function can be extended into the Taylor series:
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But in extremum point first derivative is equal to zero so: 
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in this case the (3) quadratic form looks like follows:
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The sum can be diagonalized:
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Now this equation we can compare with corresponding equation for free electrons: E=
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see that (5) and (5.1/16) are practically coincided. For cubic crystal in minimum of energy located in Γ point and 
on zero level of energy (5) looks like as follows: 
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equations are exactly the same.  There is only one difference in (6) instead of real mass we use a new parameter 
which have the name – effective mass of electron. It means that near of minimum or maximum of electron energy  
we can instead of equation (1) use much more simplest equation:
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without any additional periodic potential. Near the extremum of energy electrons moving like free particles but in-
stead of real masses we need to use in this case the mathematical parameter – effective mass. All effects  con-
cerned to real potential, created by other electrons and nuclei, are hidden in effective mass of electron. But this  
method is well working only near the extremum of electron energy (maximum or minimum).

Do not forget that the effective mass is a mathematical object, it is a second order tensor (second derivative 
with respect to wave vector projections), the values of which can be negative and depend on the direction of mo-
tion of the electron. For example in Ge there are two different effective masses: the transversal mt=0.082m and
longitudinal  mt=1.59m (here m is the mass of free electron).

The tensor of effective mass can be calculated directly for tight binding model by using equation (5.3/18). 
This tensor is diagonal and all diagonal elements are equal:
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§5.5 Excitons of large-radius (Wannier-Mott excitons)

For  semiconductors  we have  at  least  two zones,  one  of  these 
completely filled  by electrons (valence band) and the second is to-
tally free (conductivity zone) (see Figure 23), so that the minimum 
excitation energy of an electron involves its transition from the filled 
valence band to the free conduction band. Such a transition results in 
the generation of charge carriers: of an electron in the conduction 
band and of a hole in the valence band. 

But as show the experiment and theory the electron and hole can 
interact with each other and create a new quasiparticle. If the radius 
of  such  quasiparticle  is  compared  with  lattice  parameter  then  the 
electron-hole interaction can to a good approximation be regarded as 
Coulomb interaction of two point charges attenuated times, where is 
the static dielectric constant of the crystal. As you guess the energy 
levels of this new object (exciton)  is located internal the forbidden 
band and near the bottom of conductive zone. 
So, we have two charged particles (one positive, and the other nega-
tive) interacting with a simple Coulomb potential. But we must take 
into account the polarizability of the crystal by dividing by the di-
electric constant.  The Schrodinger equation in this case is look like 
so:

[− ℏ2

2me
Δe−

ℏ2

2m p

Δp−
ke2

ε |rn−r p|]ψ (rn ,r p)=(E−Eg)ψ (rn , r p) (9)

Here, mnandm p  are the effective masses of electron and hole , k=1/4 π ε 0 ,ε -dielectric susceptibility of crystal ,
rn , r p−vector of position for electron and hole.

Introduce the position vectors of the center of gravity of the electron-hole system   R and of the relative posi -
tion of electron and hole  r:
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,    r=rn−r p (10)

Equation in the new coordinates is looks like so:
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here   total mass  M=me+mp   and reduced mass of exciton:

M=mn+m p , μ=
mnm p

mn+m p
(12)

Now we can separate the variables, it is mean that we can consider the motion of centre of gravity and rotational 
moving  of exciton separately. The wave function of exciton can be presented so:
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ψ (R , r)=χ (R)φ (r) (13)

And the Schrödinger equation can be rewritten in new coordinates:
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The new substitution describing the motion of center of gravity:
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gives a new Schrödinger equation describing the exciton motion relative to the center of gravity:
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The solution of first equation is well known and look like so:
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is the kinetic energy of the exciton moving as a whole. The 
second equation looks like a Schrodinger equation for hy-
drogen-like atom. The energy and wave function can be 
calculated directly:
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It is mean that energy levels of exciton are located in the 
forbidden gap near the bottom of the conducting zone  and 
it leads to the  appearance of the set of lines near the edge 
of absorption (Figure 23).  The Bohr radius for exciton can 

be calculated by the same way: aB=
4 πε0εℏ2

μ e2 . As you 

can see, large-radius excitons are formed in crystals with large dielectric susceptibility. What about the exciton 
contribution to the absorption spectrum of dielectrics? Figure 25 shows the absorption spectrum for a copper ox-
ide crystal (Cu2O) near the fundamental edge. The band gap a T=10K is equal 2.172 eV. A series of spectral lines  
associated with excitons can be seen in the forbidden zone. 

It is important to note that exciton is neutral quasiparticles so cannot participate in electric current generation.
The binding energy 

Eg=2.17208eV
Figure 25


