
§ 5.2 Weak potential approximation.

This is a next level approximation (in compare with § 5.1.2) to description the properties the gas of free elec-
trons. Let’s use the one dimensional crystal to simplify the exact calculations. The main goal is to understand how 
the weak periodic potential affects the physical properties of free electrons.

Generally this task is an eigenvalue problem for Hamilton operator (Schrodinger equation):

Ĥ φ=Eφ (1)

Let's for simplification assume that crystal is one dimensional. In one dimensional case:

− ℏ2

2 m
d2

dx
φ (x )+U (x)⋅φ (x)=E⋅φ (x) (2)

Here U-is a weak periodical function of potential energy but only for one electron. The one-electron approxima-
tion is applicable due to the non interactive of electrons. In framework of this approximation free electrons move 
in the potential created only by nuclei periodically located at the lattice sites. It is important to note that the tem -
perature of the crystal is zero, which means that the nuclei motionless. The weakness of the potential means that  
its influence can be estimated within the framework of perturbation theory.
The periodical lattice and nuclei location is looks like follows:

Here a-unit cell length and L-total length of lattice. For the periodical boundary conditions we have relation:

L=N⋅a , here N-total number of unit cells (3)

In this case, the potential energy U (x) satisfies the relation 

U (x )=U (x+n∗a)=U (x+ L)and n∈[0.. N ] (4)

The solution of equation (2) I start searching from zero periodic potential approximation (§ 5.1.2). The corre-
sponding solution was already found (5.1.2/9,11) in 1d case we have:
 

Wave function (Eigenfunction)      φg(k x , x)= 1

√ L
e i(k x +bg) x ,

Energy (Eigenvalues)                     Eg(k x)=
ℏ2(k x+bg)
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Basis vector of reciprocal lattice    bg=
2π
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g , g∈Z

(5)

We'll use the replacements nx=n and kx=k. Some remarks about wave vector k=2π
L
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, n∈Z

and N-total number of equivalent unit cells. It is clear that :
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This means that wave function is periodical not only in real lattice with vector of translation a⋅n ,n∈Z  but in 

the reciprocal lattice too with vector of translation bg=
2π
a

g , g∈Z . It can be seen from (6) that it makes sense 

to take into account only nonequivalent values for the wave vectors located in the region of values  from −π
a

 

to + π
a

and the  total number of k-vector values inside of this region is N. Due to this property of periodicity the 

energy (5) must be periodical in reciprocal lattice:

E(k)=
ℏ2(k+bg)
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=
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⋅g)
2

2m
=Eg(k ) , g∈Z    see figures 8 and 9

(7)
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As you see on Figure 9 the energy of free electrons in empty crystal (nuclei are exist but but not create the peri -
odic potential)  can be presented as a set of energy bands Eg(kx), here g is number of band (total number of differ-
ent bands is infinitely large). The corresponding values of g for first three energy zones (bands) you can see in 
Figure 10 . The energy and wavefunctions for these three bands are looks like so:
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NB! instead of the parameter value g= 0,+1,-1,... and so on, you can use sequential numbering of energy zones 
1,2,3,... and so on.
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But our model is oversimplified. In fact, electrons move in a periodic potential created by nuclei.  Let's take 
into the account the influence of weak periodic potential. It is enough to consider the behavior of the energy at the  
points of intersection of the energy curves 1,2,3,…(Figure 10) and so on (periodically shifted I,II,III, and so on).

Let’s start from point number 1. This point is doubly degenerate it means that we have two different states 
with the same energy. Corresponding wave functions:

φ0(x )= 1

√L
e

i π
a

x
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The Schrodinger equation for perturbed model is looks like so: 

− ℏ2

2 m
d2

dx
φ( x)+U (x )⋅φ(x )=(E+E ')⋅φ(x ) (9)

Here, E0  is energy for non perturbed model (2) , E’ – correction of energy which can be calculated by perturbation 
theory for degenerate states and U(x)  - weak periodical  potential creating by nuclei. In our case we can choose a 
harmonic function as periodic potential with period “a”  (to simplify calculations) :

U (x)=U 0 cos( 2π
a

x) (10)

The first order correction for energy E’ we can calculate from the determinant:

|V (0 ,0)−E' V (0 ,−1)

V (−1, 0) V (−1 ,−1)−E '|=0

It makes sense to use consecutive numbers 1 and 2 instead of 0,-1, so that after renumbering we 
have:

|V 11−E ' V 12

V 21 V 22−E'|=0

(11)

Here V11,V12,V21,V22 are corresponding matrix elements for perturbation potential(see (8) and (11)):

V 11=N∫
0

a
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This integrals can be calculated:
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After replacement to (11) :

(E ')2=
U 0

2
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 and for corrections of energy E '1,2=±

U 0

2
(16)
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As you can see, a weak periodic potential eliminates the degeneracy at the boundary of the band structure and 
in the center of the Brillouin zone (points 1,2,3... and so on) see Figure 11. One curve goes up and the other goes 
down, which leads to the appearance of a forbidden zone (band gap). As can be seen the width of the band gap Eg 

depends on the strength (amplitude) of the periodic potential. The band structure (dependence energy of free elec-
trons moving in weak periodical potential) for first 4 energy zone you can see on Figure 12. 

It is clear that for real 3-D crystals electron energy depend on three parameters En(kx . k y . k z) - here n-num-
ber of energy zone (energy band) and [kx ky  kz] projections of electron wave vector and looks more complicated 
than in the case of the one-dimensional weak potential model.

For exaample, on Figure 13 you can see the band structure for semiconductors Si and Ge in some symmetrical  
directions for wave vectors. All  zones with energy less than fermi energy EF is filled by electrons (valence zones). 
Zones with energy over EF  not filled are free (conducting zones). Forbidden band located between the upper va-
lence and lower conduction bands.

For Ge the maximum of upper valence zone  (HOMO) and minimum of conducting zone (LUMO) is located 
in center of Brillouin zone, so called direct band gap (Γ point where  kx  =ky  =kz=0).  This means that forbidden 
zone is direct with the width 0.8 eV. For convenience the Fermi level located at zero energy for both crystals .

For Si the maximum of upper valence zone (HOMO-Highest Occupied Molecular Orbital) and minimum of 
conducting zone (LUMO-Lowest Unoccupied Molecular Orbital) is located in different  points of Brillouin zone 
(so called indirect band gap).  This means that forbidden zone is non direct with the width 1.1 eV.
In Table  you can see the band gap width for different  semiconductors and insulators.

Material Symbol
Eg (eV)

T = 0 K T = 300 K

Silicon Si 1.17 1.11

Germanium Ge 0.74 0.66

Indium antimonide InSb 0.23 0.17

Indium arsenide InAs 0.43 0.36

Indium phosphide InP 1.42 1.27

Gallium nitride GaP 2.32 2.25

Gallium arsenide GaAs 1.52 1.43

Gallium antimonide GaSb 0.81 0.68

Cadmium selenide CdSe 1.84 1.74

Cadmium telluride CdTe 1.61 1.44

Zinc oxide ZnO 3.44 3.2

Zinc sulfide ZnS 3.91 3.6

Sodium Chloride NaCl 8.97

Calcium fluoride CaF 12.1



The  electrical  conductivity  of  materials  de-
pends on the shape of the energy zones and their 
filling (see Figure 14).

We assume there  are  two energy zones.  For 
semiconductors and dielectrics                  , the 
lower band is completely filled, and the upper one 
is not filled at T = 0. Different semiconductors and 
dielectrics depend on the band gap. It is clear that 
this division is pretty conditional. 

For metals (conductors)            conducting 
energy zone is partially filled .

In  half-metals, the valence band for one spin 
orientation is partially filled while there is a gap in 
the density of states for the other spin orientation. 
This results in conducting behavior for only elec-
trons in the first  spin orientation.  It  is  clear that 
half-metals are rather exotic materials.
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