
§5.1.1 Free electrons approximation.

We start from the simplest models to describe the properties of electron subsystem. The most simplest is a model  
of free, independently moving  electrons (Drude model of free electron gas).  In good conductors such as Cu or 
Ag we have a large number of electrons freely moving along the crystal lattice. These free electrons form a cloud 
of  free, independent, non-interacting  electrons (at least this model well describes the transport properties of 
electrons in conductors). What about the electrostatic repulsion of these electrons? Is it possible to ignore it?

The electron-electron electrostatic repulsion can be neglected due to compensation by the Coulomb attrac-
tion between negative electrons and positive atomic nuclei. 

NB!
This statement is very strange to say the least. And in fact cannot be used as a strict  explanation for the ignore of  
the electrostatic interaction of free electrons. In fact the rationale this fact is not so simple and can be done only  
in the framework of quantum mechanics. 

In the crystal lattice of metals (as we will see later), free (valence) electrons form a quantum many-particle  
system. IIn the ground state of this system, electrons occupy all energy levels up to the so-called Fermi energy. In  
order to start moving (participate in transport phenomena), the electron must jump over from the Fermi energy to  
the first unoccupied energy level - by other words the electron must be excited. IIn a quantum many-particle sys-
tem, this looks like excitation of a system including all N particles. This means that we are not dealing with a sin -
gle excited electron, but with the collective excitation of a system of N-particles. These excitations behave like a  
system of non-interacting particles , electrons in our case. But these quasiparticles (excitations not real electrons)  
have a completely different nature; it's just convenient for us to call them “electrons”. 

The situation is similar (only similar and nothing more) to the movement of waves on the surface of water.  
Waves in this case represent a disturbance of the water surface. These waves (excitations, “electrons” in metals )  
move independently and look like the movement of some formal particles - quasiparticles.

We use these non-interacting quasiparticles in our further considerations. And we'll call them "free electrons."

Despite the simplicity, this approximation can be applied to describe the properties of electrons in metals and as a  
start point for more accurate DFT (Density Functional Theory) approximation. We take into account the fact that 
electrons are Fermi particles (one particle in one state or formally two electrons in one state, but with opposite 
spins.) but do not take into account spin-spin interactions. This approximation can be applied to describe the prop-
erties of electrons in metals.

The Schrodinger equation for free electron is:
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The wave function φ (x, y, z) depends on three coordinates x, y and z. Due to the equivalence of the coordinate  
axes, the total wave function can be represented as the product of a functions depending on the corresponding co-
ordinate x, y or z.

φ(x , y , z)=φx (x )φ y( y)φ z(z) (2)

This makes it possible to consider the motion of an electron separately along each axis. Coordinates can be sepa-
rated. The Schrodinger equation for x-axis is:
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The solution of (3) for different axis is looks like so:

φ x=A x eik x x and correspondingly φ y=A y eik y y   and φ z=A z eik z z (4)

and total function:

φ ( x , y , z)=A x A y A z ei k⃗ r⃗ (5)

here k⃗  - wave vector for electron. The values for wave vector k⃗ can be defined from periodical boundary con-
ditions. If the length of lattice in directions x,y, and z is correspondingly Lx ,Ly and  Lz  (here the Lα tends to infin-
ity) so: 

φx(x)=φx(x+mxLx), φy(y)=φy(y+myLy), φz(z)=φz(z+mzLz) (6)

 here mx, my  and mz are integer numbers. After substitution (4) to (6) and take mα=1 we have:

φ x (x)=φ x(x+Lx)=A x ei k x⋅x=A x ei k x⋅(x+Lx ) (7)

and after simplification for x direction:

1=ei k x⋅Lx (8)

It is possible only if  k x⋅Lx=2 π nx ,  here nx∈Z , now we have an equation for calculating wave vector in each 
direction::
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It is important to understand that the wave vector and energy are discrete quantities. Not all possible energy,  
wave vector and momentum values are allowed, but only those that satisfy to the condition for the existence of 
standing waves (9), in our case of standing wave function. The standing wave arises from the self-interference of 
the wave function which arise due to periodica boundary conditions.

The combination of (9,4 and 3) gives the energy of free electron for different directions:
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and the total energy can be calculated as follows:
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According to (5) the wave function is:

φ (x , y , z)=A x A y A z ei k⃗ r⃗=Ax A y Az ei (k x x+k y y+k z z) (12)



The unknown constants Ax,  Ay,   Az can calculated from normalizing condition for wave function:
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Using  (7)  give A x=1 /√Lx ,  the  rest  of  the  constants  can  be  calculated  in  the  same  way A y=1 /√L y ,

A z=1 /√Lz .  After substituting this result into (12), we have:
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here V is a total volume occupied by gas of free electrons. 
The summary for obtained results of solution of Schrodinger equation is looks like so:

It is important to emphasize that the projections of wave vectors play the role of quantum numbers and can be
used to number various quantum states. Hence, it makes sense to rewrite the previous expressions in the form:
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The energy of free electron depend on modulus of wave vector and this dependance presented on Figure 1 (for  
simplicity, we assume that Lx=Ly=Lz=L).

Points on the Figure 1 are the allowed values of energy.  It is clear that allowed energy levels are degenerated 
or example the first excited state is degenerate 6 times. It is means that  the same energy have the states with the  
next possible combinations of quantum numbers:

[kx ky kz]: 2 π /L⋅ ([1 0 0] [0 1 0] [0 0 1] [-1 0 0] [0 -1 0] [0 0 -1])

But number of electrons occupied this state is equal to 12 (electron spin must be taken into account). 
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The number of electrons is very large but finite. Each quantum state, defined by their individual set of quan-
tum numbers, is occupied by two electrons (due to Pauli principles). 

At zero temperature, electrons occupy all states from zero energy to the highest occupied state. This highest 
occupied level is called the Fermi level and the corresponding energy is called the Fermi energy. All states over 
the Fermi level are non occupied (see Figure 1).

Here k F is the wave vector corresponding to the Fermi energy. For gas of free electrons (15) these parame-
ters are related as follows:
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To compute kF, consider the space of k-vectors. This space is three-dimensional (since k-vectors are three-di-

mensional). According to (9), the admissible values of wave vectors fill a square grid with steps 
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, respectively (see Figure 2). This means that each valid k-vector occupies a cube with the same sides  

lengths. The volume of this cube is equal  
(2π )3

V
=

(2π )3

Lx Ly Lz

. Electrons occupies all states with  wave vectors 

from 0 to kF , this means that all this wave vectors located inside of sphere with radius kF.
 The total number of occupied states Nstates can be calculated as the ratio of the total volume of a sphere with ra-
dius kF and the volume of a cube pertaining to one state.
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If total number of electrons is N then N=2 N states and after substitution we have:

Figure 2



k F=(3 π 2 N
V
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The Fermi energy can be calculated directly:
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The Fermi temperature T F=
EF

k B

 can also be defined formally, the physical meaning is that this is the tempera-

ture that is required to excite all electrons not only located near Fermi level.

Example: Let's calculate all these parameters for a sodium crystal (Na). The  
cubic unit cell of Na is looks like follows (Figure 4).3Start from calculation 
of electron concentration. We assume that each Na atom contribute one va-
lence electron to the cloud of free electrons. The total number of free elec-
trons inside of one unit cell is 2. The concentration can be calculated di-
rectly:

n= N
V

= 2

4.23 10−30
≈2⋅1023 cm−3

(20)

The Fermi wave vector, energy and  temperature  are:

k F=108 cm≈1 Å , EF=0.67⋅10−17 J≈4 eV , T F≈50000 K (21)

All previous equations and results are correct for zero temperature and in this case electrons occupied energy 
levels in the range [0...EF] . But what happened if temperature of crystal is greater than zero. It is clear that in this 
case free electrons occupied all possible energy levels from 0 to ∞.

The probability of filling energy levels can be calculated from Fermi-Dirac distribution function:

f (Ekx , ky , k z
, T )= 1

e
E kx ,k y ,k z

−μ
kB T +1

(22)

Here μ – chemical potential (the chemical potential of a substance is the energy that can be absorbed or released 
due to a change in the number of particles of a given substance, for example, in a chemical reaction or phase tran-
sition. It is the energy of adding or removing one particle to a system without doing work) and {kx, ky, kz}- a set of 
three quantum numbers numbering different states (15). To visualize this function is make sense to use dimension-
less energy E/EF and temperature T/TF. The visualization result for different temperatures is shown in Figure 4.

Total number of electrons can be calculated by this way. The summation is carried out over all possible states.

∑
kx , ky , k z

f (Ekx ,k y ,k z
,T )=N (23)

This equation determine the chemical potential μ as function of electrons concentration and temperature.

4.2 A
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Let’s define the useful function - density of states as ratio of the number of allowed states in range of ener-
gies from E to dE:

g(E)=
dN states

dE
(24)

Using (20) and taken into account Pauli principle we have:
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 Thus the concentration of electrons for zero temperature can be calculated so:
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And for non zero temperature we need to take into the account the distribution of electrons over all states (energy 
levels) from 0 to ∞ :
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This integral can be calculated by parts and to simplify the calculation let’s apply the next substitution
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The first member is equal to zero. This give the next expression to calculate concentration:
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n=2∫
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∞
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The behavior of the derivative of the Fermi-Dirac function on temperature is shown in Fig. 6. For low tempera-
tures, it looks like a delta function δ (E−μ) . If we take this into account and substitute the electron concentra-
tion in (27), then we get:
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If compare the last expression with (20) we see that are equal. It means that for low temperature we can use the 
next approximation  μ=EF . But actually the chemical potential depend on temperature. This dependence is 
very weak and for relatively low temperature (T<<TF) is looks like this:

μ (T )=EF [1−π 2
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⋅( T
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)
2

] (31)

For real metals (material with large number of free electrons) TF  is several tens of thousands degrees. This 
means that the approximation μ=EF  works well for the room temperature in free electron model.

Interesting question about the heat capacity of metals (free electron gas). As we know a metals consist from 
two subsystems, very light electrons and heavy nuclei (in fact, it is a combination of a central nucleus with bound 
electrons, so-called core of  atom).  From point of view of classical physics the average heat kinetic energy of free 

electrons is equal to his total energy and can be calculated by this way Etot=Ekin=
3
2

kT . The potential energy 

can  be  neglected  (free  electrons  are  non-interacting  quasiparticles).  For  one  heavy  nuclei  by  the  same way 

Ētot=Ēkin+ Ē pot=
3
2

kT + 3
2

kT=3 kT due to average kinetic and potential energies are equal. If we assume that 

number of nuclei and free electrons are equal N the total internal energy of metals is: Etot=4.5 kT N . The heat-

capacity for constant volume of crystal can be calculated so:  C v=
d Ē
dT

=4.5 kB N .  For one mole of matter 

N=NA  then  Cv=
d Ē
dT

=4.5 kB N A=4.5 R but experiment gives  C v=3R .  Why? It seems that the electrons for 

some reason do not contribute to the total energy of the crystal.
Let's calculate the heat capacity of free electrons to explain this paradox. This approximation working well for  

good metals.  Let’s start from calculation of total energy of free electrons. For non zero temperature it can be done 
so:

E=2∫
0
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E⋅G(E)⋅f (E , T )dE (32)

This expression can be a little bit modified, actually we need to calculate the next integral:
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This substitution can be done because:
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For real metals T << TF, this means that in fact, the contribution of free electrons to the total metal heat capac-
ity can be neglected. The physical explanation of this paradox is simple. The Fermi temperature indicates to what 
temperature the metal must be heated in order to disturb all electrons with energies from 0 to EF. This temperature 
is quite high and above the melting point of any metal. This means that at room temperature we can change the 
energy of electrons near the Fermi level. This is only few percentage from total number of free electrons. 

All other electrons are inactive, their energy cannot be changed(real temperature just not large enough). They 
do not affect the total heat capacity, since they just cannot absorb thermal energy. 

Some conclusions from obtained results:
1. The free electron gas approach is working well for system with large number of free electrons for example for 
metals.
2. The number of "active" electrons (which can change their energy and thereby contribute to the heat capacity  
and to the creation of electric current) is a little. Not more than a few percentage from the total number of free  
electrons.
3. For real metals, the low-temperature approach is applicable, since the Fermi temperature is much higher than  
the melting point of most metals.
4. Important emphasize that Fermi energy and chemical potential is not the same parameter  although sometime 
they are can be equal.


