
§4  . Adiabatic approximation  
 

The general nonrelativistic Schrödinger equation describing the properties of any substance is as follows:

Ĥ⋅Ψ=E⋅Ψ (1)

The wavefunction Ψ(r , R)  depend on coordinates of all electrons (r) and nuclei (R).  Ĥ - the Hamilton operator can 
be written in the following form:

Ĥ=T̂ e+ T̂ N+V ee+V eN+V NN (2)

here:
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Δi  -kinetic energy operator for all electrons in crystal, (3)

                          T̂ N=−ℏ2
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(4)-kinetic energy operator for all nuclei, (4)
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(5)- potential energy for interacting electrons, (5)
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(6)-potential energy for interacting nuclei (6)
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(7)-potential energy describing the interaction of  electrons and 

nuclei.
(7)

The total number of parameters of total wavefunction is quite large and equal to total number for electrons and nuclei 
in crystal multiplied to 3 (for 3-dimensional space) and could be  represented as follows:

Ψ( r⃗ , R⃗)=Ψ(x1 , x2 , ... xNe
, y1 , y2 ,... yN e

, z1 , z2 ,... zNe
, X1 , X2, ... XN n

,Y 1 , Y 2 , ...Y N n
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) (8)

  
here xi,yi,zi-coordinates of electrons and  Xi,Yi,Zi – coordinates of nuclei. Total number of arguments is proportional to 
Avogadro number, around 1023. This means that the general Schrödinger equation is impossible not only to solve, but even 
to write down. We can try to simplify this equation making use of the fact that electrons masses is mach less than the mass 
of nuclear masses. This means that the speed of motion of electrons is much greater than the velocity of nuclei, and we can 
use the approximation in which electrons move in the field of practically stationary atoms. In this case the motion of  
electrons and nuclei can be considered separately. By other words, we have two subsystems in a crystal. The mobile  
electrons and very slow nuclei. 

From the point of view of quantum mechanics the total wave function could be written as follows (separation of 
motion of electrons and nuclei):

Ψ( r⃗ , R⃗)=ψq e, qn
( R⃗)⋅φqe

( r⃗ , R⃗) (9)

here qe and qn is a quantum numbers describing the properties of electrons and nuclei, 



ψqe ,qn
( R⃗) - the part of the total wave function describing the properties of practically immobile nuclei. As you can see, 

this wave function depends only on the coordinates of the nuclei and does not depend on the coordinates of the electrons. 
This fact can be interpreted as the motion of nuclei in the mean field created by all very fast moving electrons. 
φqe( r⃗ , R⃗) - the electronic part of the total wave function must depend on the coordinates of the electrons and nuclei. 

Nuclei  are  stationary  for  electrons   but  the  motion  of  the  electrons  depends  on  the  position  (coordinates)  of  these 
stationary nuclei.

Now we need to calculate the derivative of total wavefunction with respect to coordinates of nuclei and electrons, see  
the equations 3 and 4.

Δi Ψ(r , R)=Δi(φ(r , R)⋅ψ(R))=φ(r ,R)Δi ψ(R) (10)

ΔnΨ(r ,R)=∇ n∇n(φ (r ,R)ψ(R))=φ(r ,R)⋅Δnψ(R)+2⋅∇nφ(r , R)⋅∇nψ(R)+ψ(R)⋅Δnφ(r ,R) (11)

after substitution to (1) we have:

ψ(R)⋅T̂e⋅φ(r ,R)−ℏ2
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(φ(r , R)⋅Δnψ(R)+2⋅∇nφ(r , R)⋅∇ nψ(R)+ψ(R)⋅Δnφ(r , R))+

+V ee⋅φ(r ,R)ψ(R)+V NN⋅φ(r ,R) ψ(R)+V eN⋅φ(r ,R) ψ(R)=E⋅φ(r ,R) ψ(R)
(12)

And after reordering of members in equation (12):

ψ(R)⋅T̂e⋅φ(r ,R)+V ee⋅φ(r ,R)ψ(R)+V eN⋅φ(r , R)ψ(R)−ℏ2
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[ φ(r , R)⋅Δn ψ(R)+

+2⋅∇nφ(r , R)⋅∇nψ(R)+ψ(R)⋅Δnφ(r ,R) ]+V NN⋅φ(r , R) ψ(R)= E⋅φ(r ,R) ψ(R)

(13)

       Equation (13) can now be split into two equations. The first of them describes the properties of electrons in the field  
of stationary nuclei, the second - the properties of nuclei in the average field created by all electrons. As you can see, the  
total energy of electrons plays the role of potential energy for nuclei (together with the pairwise interaction of nuclei with  
each other VNN): 

ψ(R)⋅T̂ e⋅φ(r ,R)+V ee⋅φ(r ,R)ψ(R)+V eN⋅φ(r , R)ψ(R)=ϵ(R)⋅φ (r , R)ψ(R) ,
and
ℏ2
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(φ(r , R)⋅Δnψ(R)+2⋅∇nφ (r , R)⋅∇nψ(R)+ψ(R)⋅Δnφ(r ,R))+V NN⋅φ (r ,R )ψ(R)+ϵ(R)⋅φ(r ,R)ψ(R)=E⋅φ(r ,R)ψ(R)
(14)

        Now we can  multiply the  second equation in (14) by φ( r⃗ , R⃗)* , followed by integration over the entire crystal 
with respect to electrons coordinates r, we have finally:

−ℏ2
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(∫φ(r ,R)φ(r ,R)* dr3⋅Δnψ(R )+2⋅∇nψ(R)⋅∫φ (r ,R )*⋅∇nφ(r ,R)dr 3+ψ(R)⋅∫φ (r ,R )*Δnφ(r , R)dr 3 )+
+V NN⋅φ(r ,R )ψ(R)=E⋅φ(r ,R )ψ(R)

(15)

We assume that electrons and nuclei wave functions φ(r , R)   and ψ(R) normalized on unit. It is means that:

∫φ(r ,R)*⋅φ(r , R)dr3=1 and ∫ψ(R)*⋅ψ(R)dr3=1. (16)

By using equation (16) we can show that  (15.I)  integral is equal to 0:
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∫φ(r ,R)*⋅∇nφ(r , R)dr3=0 => ∇n∫φ(r ,R)2dr3=2⋅∫φ∇ nφ⋅dr
3=0 .

The integral  (15.II)  ∫φ(r ,R)*⋅Δnφ (r ,R)dr3 describes  the  influence of  the  motion of  nuclei  on the  states  of 
electrons and has the name integral of nonadiabaticity.  This second order effect for example  must be taken into the 
account for multiphonon transition in crystals. Due to the large difference in the masses of electrons and nuclei (high 
electron mobility and slow motion of nuclei)  this effect  is  very weak. This means that  the corresponding derivative  
Δnφ(r ,R)  is almost equal to zero and can be neglected (this is not always possible to do, but in the first approximation 

it can).
The first equation in (14) can be simplified by the same way by multiplication on   followed by integration over the  

nuclei coordinates R. Finally the system of equations (14) could be represented as follows:

T̂ e⋅φ(r ,R)+V ee(r)⋅φ(r ,R)+V eN (r ,R)⋅φ(r , R)=ϵ(R)⋅φ(r , R)−equation for electrons
T̂ N ψ(R)+V NN (R)⋅ψ(R)+ϵ(R)⋅ψ(R)=E⋅ψ(R )−equation for nuclei (17)

As you see in the adiabatic approximation, the general problem of quantum mechanics for a crystal can be separated  
into two tasks, two equations. The first equation describes the properties of the electronic subsystem, and the second  
describes the motion of nuclei. It is very important to note that each nucleus moves in the field created by all other nuclei  
and in the mean field created by all electrons. The energy of electrons plays the role of potential energy for nuclei (part of  
it). 

For the equation for nuclei  T̂ N ψ(R)+U (R)⋅ψ(R )=E⋅ψ(R) , here  U (R)=V NN (R)+ϵ(R) , the potential energy can be 
expanded into a power series in terms of the displacement of nuclei with number k from equilibrium position uk:
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The k-index includes the atom number and the x, y, or z offset direction. In harmonic approximation 
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Φkk '⋅uk⋅uk ' (19)

Φkk ' - dynamical matrix or matrix of force constants (elastic coefficients for the spring connecting atoms k and k ’). This 

matrix can be diagonalized using so called  normal coordinates Aq=∑
k

C k
quk ,  in this case potential energy of vibrating 

atoms  in  linear  (harmonic)  approximation  is:  U=1
2∑q

ω2(q)⋅Aq
2

and  Schrodinger  equation  in  normal  coordinate 

representation is: 

−ℏ2 ∂2 ψq

∂ Aq
2 + 1

2
∑
q

ω2(q)⋅Aq
2 ψq=0 , here q-is a wave vector (or quantum number) of harmonic oscillator. 

The solution for this equations can be found by using standard methods of quantum mechanics. 
Regarding the equation for the electronic subsystem, there are many different methods and approximations for finding 

the corresponding solution.


