
 §3. Vibration of lattice

3.1 Harmonic vibration of 1d one atomic lattice.

We supposed that the lattice is one dimensional. All atoms are chemically identical.  The temperature of lattice 

is zero, it is means that atoms are fixed in the its own lattice nodes. 

As we shall subsequently learn, all the regularities obtained for this artificial one-dimensional model prove to 

be true for three-dimensional lattices as well. 

The our general aim is a calculation of thermal capacity of crystal and dependence of thermal capacity on  

temperature. The total number of atoms in lattice equal to N, and we presume that this number is sufficiently large ( the 

order of Avogadro's number 1023).  For small deflections of atoms from their equilibrium positions the interaction 

forces may be considered quasi-elastic, i.e., proportional to the variation of the interionic distance. The force acting on 

each atom is proportional to deflection of atoms from equilibrium position or  by the other words me can use the  

Hooke's law for calculation of this forces.   If all atoms are numbered and u n is a displacement of the atom  with 

number n from equilibrium position. We presume that nearest atoms are connected by spring with elastic constant g:

So the total potential energy of total crystal  could  be written in the next form:

V=1
2

g∑
n

(un−un−1)
2

(1)

Here un  is displacement of atom with number n from its equilibrium position. In this equation  (un-un-1)  is an 

extending or compression of linear spring connecting two atoms with numbers n and n+1. This is a quite classical 

equation. The equation of motion or second Newton's law or the equation describing the dependence of displacement  

un on time and  is look like so:

m⋅ak=m⋅ük=Fk , here m-  is mass of atoms. (2)

Fk - force acting on atom with number k. This force can be calculated from (1) with general expression:

Fk=−dV
duk

(3)

So for atom with number k the equation of motion is looks like so:

ük=
g
m

[uk+1−2⋅uk+uk−1] (4)

For calculation force action on this atom (number k) we taken into account only two members of this sum 

consisting the deflections of this atom. In our case the total number of equations is equal to number of atoms.  All 

equations are depend on each other. So we have a very complicated system of the second order differential equations. 

How to solve this problem? But if the forces acting between the atoms are linear (as in the our case) so the solution of  

such problem is well known this is a harmonic function or harmonic traveling wave propagating along the chain in the  

both directions.  I'll  write the harmonic functions in exponential form. So we get:



uk (t )=
1

√mN
⋅A⋅ei (ω t+qak )

(5)

Here A is a amplitude of given wave, ω is a cycle frequency, q-wave vector (it is well known that the length of  

this vector is equal to 
2 pi
λ , λ is a wave length) and a-distance between nearest atoms.  Do not forget that the sum of 

the solutions is also a solution of the equation.  Or by the other words if we wish  describe the  motion of  atom with  

number k, we have to take into the account total set of all harmonic waves. The parameter q here is a  numbering index 

for different harmonic waves.  If we substitute the solution (5) into the equation (4) we will get :

−ω2⋅A⋅e i(ω t+qak)= g
m

( A⋅e i(ω t+qa(k+1 ))−2 A⋅ei (ω t+qak )+A⋅ei (ω t+qa(k−1)))

−ω2⋅eiqak= g
m

(ei (qa(k+1))−2ei (qak)+ei (qa (k−1)))  

−ω2= g
m

(eiqa−2+e−iqa)  

ω2=2 g
m

(1−cos(qa))

ω2=4 g
m

⋅sin2( qa
2
)  

after replacement ω0=√ 4 g
m

 we have:

ω(q)=ω0⋅|sin( qa
2
)| (6)

So we got the dependence of cyclic frequency from the wave vector or dispersion relations (figure 1). Due to 

the periodicity of frequency(sin function), it is not sense to take into the account all values of wave vector but only  

nonequivalent vectors located in  the interval from 0 to 2π (figure 2). 

It is clear that ω(q)=ω0⋅|sin( qa
2
)|=ω0⋅|sin((q+ 2πn

a
)a

2 )|=ω(q+ 2πn
a

) , heren is any integer number. .

For displacements (5) we have the same result:
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uk (t )=
1

√mN
⋅A⋅ei (ω t+qak )= 1

√mN
⋅A⋅e

i(ω t+(q+2πn
a

)ak)
= 1

√mN
⋅A⋅ei (ω t+qak )ei (2⋅π⋅n⋅k ), here nand k∈Z

Make sense to use more symmetrical representation of this dependency, we will use the wavevector values 

from region from -π/a to π/a (figure 3). 

Now we can use equation (5) to describe the vibration of any atom in crystal, but before that it is necessary to 

determine the value of the wave vectors q. How to calculate it? We use for this aim the periodic boundary conditions, 

it means that the atoms with number k and k+N this is the same atoms. Mathematically it's means that displacement of  

the atoms k and k+N from the  equilibrium position are equal:

uk=uk+N (7)

After apply equation (5) 

uk (t )=
1

√(mN )
⋅A⋅ei (ωt+qak )= 1

√(mN )
⋅A⋅e iω t⋅e iqak= 1

√(mN )
⋅A (t)⋅eiqak

(8)

Afte substitution into the equation (7) we get:

e iqka=e iq(k+N)a

After a little simplification:

e iqNa=1

This is possible if q⋅N⋅a=2⋅pi⋅n , here   n∈N   and  q=2 pi
N a

n=2 pi
L

n  here,L — total length of 1d crystall. If we take 

into accounr figure 3, The non equivalent values of wave vector located in the range  [ −π
a

 ,  π
a

] and could be 

calculated as follows: 

q=2 pi
L

n , andn∈[− N
2

,+ N
2
] (9)

As you see the wave vector is discrete parameter which have N valid values in the range rom −π
a

 to π
a

. 

The wave vector can be interpreted as the number of a harmonic wave propagating in a 1d chain of atoms. The  
total number of distinct, nonequivalent harmonic waves is equal to N (a large but finite number). Once the wave vector 
is determined (take it from (9)), we can calculate the frequency of the corresponding wave using (6). And at the last 
stage, we can calculate the displacement of any atom in the chain that participated in the creation of this harmonic  
wave using (5).

An important note: if we want to calculate the real displacement of the k atom, we need to take into account the 
combination of all harmonic waves. Each atom participates in the creation of all harmonic waves at the same time:

uk (t )= ∑
q=− π

a

+π
a

1

√(mN )
⋅Aq⋅e i(ω(q )t+ qak) ,   here (10)

Aq- is an amplitude of harmonic wave for cooresponding wave vector q. Total number of sum members is N.
Now i want to calculate the useful function , density of vibrations which definition is:

g(ω)= dn
d ω (11)

replacement



The physical meanings is the number of harmonic waves with frequencies in the range from ω to ω+dω. The integral 

∫
ω1

ω2

g(ω)=n12  is equal to number of harmonic waves in region of frequency from ω1 to ω2.

We start from equation (9) q=2 pi
L

n . The differentiation give : 

dq=2 pi
L

dn (12)

Or for dn:

dn= L
2π

dq (13)

After replacement to  (11):

g(ω)= L
2π

dq
d ω

= L
2π

1
dω
d q

(14)

Derivative 
dω
d q

 can be calculated from (6):

dω
d q

=
ω0⋅a

2 |cos ( qa
2
)| (15)

Substitution to the (13) give:

g (ω)= L
2π

d q
d ω

= L
2π

2

ω0⋅a|cos (qa
2
)|
= L

πa
1

ω0|cos (qa
2
)|
= L

πa
1

ω0√1−sin2( qa
2
)
= N

π
1

√(ω0
2−ω2) (16)

It is make sense to correctly normalize this function. We 
know that:

∫
0

ω0

g(ω)=N≠ N
π ∫

0

ω0

1

√(ω0
2−ω2)

=N /2 .

It means that we need take into the account both 
branches (left and right on figure 3 ) and multiply (16) 
to 2.

The graphic of  function G(ω)=
g(ω)
N π
ω0

you can see on 

figure 4.
There is a useful formula which can be used to 

simplify the calculation of specific physical properties 
of crystals in further:

dq= L
2π

g(ω)d ω  (17)
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So, now we are ready to start the calculation of heat capacity of the one dimensional artificial crystal from the 

point of view of classical physics.

The first assessment for heat capacity can be done with a very simple classical approach. From the classical  

point of view if the total number of atoms is N and lattice is one dimensional, in this case the total number of the 

degrees of freedom is equal to N (1 for each atom, we assume that there is only longitudinal displacements of atoms 

along the chain of atoms). If the temperature of crystal is not  zero, so the average thermal kinetic energy associated 

with one degree of freedom is equal  
kT
2

 and the total  thermal kinetic energy of whole crystal is equal to 
kTN

2
. The 

average  kinetic and potential energies associated with thermal motion are equal to the total internal energy of the 

crystal and equal to kTN. So as you see we can calculate the heat capacity of lattice (need to calculate the derivative  

with respect to T) and we get simple kN. The result do not depend on the temperature.  This result is conflicting with 

the experimental data. Experiment show that for low temperature the heat capacity have a very strong dependence on  

temperature and proportional to Tn, here n is the dimension of crystal.

But what give us the quantum mechanical approach ? We start from the exact calculation of internal energy of  

the crystal.  The classical formula for calculating the internal energy  of crystal is look like so:

E=Ekin+Epot=
m
2 ∑k

u̇k
2+ g

2∑k

(uk−uk+1)
2 , summation over the all atoms. (18)

The calculation of kinetic energy give:

Ekin=
m
2 ∑k

u̇k
2=m

2 ∑k

u̇k⋅u̇k
*

(19)

After using (8) we have:

Ekin=
m
2 ∑k

u̇k⋅u̇k
*= 1

2N ∑
k
∑

q

Ȧq e iqka∑
q '

Ȧq '
* e−iq ' ka

(20)

After reordering of summation:

Ekin=
m
2 ∑k

u̇k⋅u̇k
*= 1

2N ∑
qq '

Ȧq Ȧq '
* ∑

k

e−i(q−q ') ka
(21)

The last sum in (21) could be represented by delta function( ):
 Figure 4

∑
k

˙e−i (q−q ')ka=δq q '⋅N

if q≠q '  then e−i (q−q ')ka is a fast oscillating function and corresponding sum is equal to zero.

(22)



After simplification we have:

Ekin=
m
2 ∑k

u̇k⋅u̇k
*=1

2∑q

Ȧq
2

(23)

As you see , in comparison with (19), the summation over the atoms is replaced by the summation over the wave 
vectors.

By the same way for potential energy: 

Epot=
g
2 ∑k

(uk−uk+1)
2=g

2 ∑k

(uk−uk+1)⋅(uk−uk +1)
*=g

2 ∑k

(uk⋅uk
*+uk +1⋅uk+1

* −uk+1 uk
*−uk⋅uk +1

* ) (24)

The corresponding amounts can be calculated separately (prove it!):

g
2∑k

uk⋅uk
*= g

2m∑
q

Aq
2     

g
2∑k

uk +1⋅uk+1
* = g

2m∑
q

Aq
2   

g
2∑k

uk +1uk
*= g

2m∑
q

Aq
2⋅e iqa    

g
2∑k

uk⋅uk+1
* = g

2 m∑q

Aq
2⋅e−iqa

After the substitution to (19) we will get:

Epot=
2 g
2 m∑q

Aq
2(1+cos(qa))=1

2∑q

4 g
m

Aq
2 sin2( qa

2
)    and after using (6)=1

2∑q

ω2(q)⋅Aq
2

Finally for total energy of vibrating crystal:

Etot=∑
q

1
2
( Ȧq

2+ω2(q)⋅Aq
2) (25)

Does this equation remind you of something? This equation means that we can represent the lattice as a set of 

independent  harmonic oscillators, and each oscillator is associated with  one harmonic wave with specific wave 

vector q. The total number of such oscillators is N, and the wave vector is the number of the oscillator. But if so, we 

can use an exact quantum mechanical expression for the energy of harmonic oscillators. So:

Etot=∑
q

(ℏ⋅ω(q)⋅(nq+
1
2
)) (26)

For a nonzero temperature value, it is necessary to take into account the filling of the upper energy levels for each 
harmonic oscillator. To do this, we must use the average for quantum numbers nq described by the Bose-Einstein 
distribution.

n̄q=
1

e
ℏω(q )

kT −1
(27)

After substitution to (26) and ignoring of zero point energy:

Ētot=∑
q

ℏω(q)

e
ℏω(q )

kT −1
(28)



Summation over the q-vector can be replaced by integration using the following standard relations:

∑
q

...→ V

(2π)3∫
q

...dq3  -for 3d space and 

∑
q

...→ L
(2π)∫q

... dq−for 1d space, here V and L are volume and length of crystal .

Now for total energy we have:

Etot=
L

2π ∫
−π/2

π /2 ℏ ω(q)

e
ℏω (q )

kT −1

dq= L
π ∫

0

π /2 ℏω(q)

e
ℏω(q)

kT −1

dq (29)

after using (17) and (16) :

Etot=
2N
π ∫

0

ω0

ℏω

√(ω0
2−ω)(e

ℏω
kT −1)

dω , here ω0=√ 4 g
m (30)

The heat capacity for a fixed volume can be calculated as a derivative of the total energy with respect to temperature.

C v=
dEtot

dT
=

2 N
π ∫

0

ω0 (ℏω)2⋅e
ℏω(q )

kT

√(ω0
2−ω)(e

ℏω
kT −1)2⋅kT 2

d ω (31)

Using new variable x=ℏω
kT

 :

C v=kN
2
π∫

0

x0

x2⋅ex

√(x0
2− x)(ex−1 )2

dx , here  x0=
ℏω0

kT
=

h ν0

kT
 (32)

For  one  mole  of  atoms N=NA  and  kNA=R.  On 
figure 5 you can see the result of calculations of 
specific heat for two different values of ν0.  For 
high temperatures, Cv tends to the classical limit 
R.

It is well known, from the theory of 
elasticity, that the speed of propagation of sound 
impulses in a solid rod    v0=√E /ρ . For chain of 

atoms ρ=m
a

  and Young mofulus  :

E= tention force
relative extension

=
g⋅(uk−uk−1)
|uk−uk−1 | /a

=g⋅a

from where do we get  v0=a⋅√ g
m

. 

C
v/

R

T(K)

ν
0
=1 THz

ν
0
=5 THz

figure 5



There are two different types of speeds describing propagation of waves in matter, phase velocity(velocity of harmonic 

wave with fixed q)  v p=
ω
q

and group velocity (the rate of energy transfer in the crystal)  v g=|d ω
dq | . For chain of 

atoms: v p=v0|sin
aq
2

aq
2

|  and v g=v0|cos
aq
2 | .  For small wave vectors(very long wave length)  vp=vg=v0.

3.2 Harmonic vibration of 1d two atomic lattice.

We supposed that  the lattice is  one dimensional  but  each elementary cell  consist  two different  atoms per 

elementary  cell.  The  masses  of  atoms are  different  and  equal  to  m1 and  m2.  The  force  constant  of  the  spring 

connecting the atoms 1-2 is g and 2-1 is f. The length of basis vector is equal a.

Each unit cell contains two atoms of types 1 and 2. To denote the displacement of atoms from the equilibrium position,  

we need to use two indices. The first index  must be used for numbering unit cells, and second for numbering the type 

of atom within a given unit cell. For example: un
1  - describes the displacement of an atom of type 1 in unit cell n, un+ 1

2  

- describes the displacement of an atom of type 1 in unit cell n+1.

The temperature of lattice is zero, it is means that atoms are fixed in the his own lattice nodes. In this case have  

two different springs connecting the atom. So the expression for potential energy is look like so:

Epot=
g
2∑n

(un
1−un

2)2+ f
2∑n

(un
1−un−1

2 )2  - summation over unit cells. (33)

Equation of motion for atoms in unit cell with number k can be obtained by the same way as in previous part. The  

general equations (2) and (3) give us the desired equations:

m1⋅ük
1=− dV

duk
1
=−g(uk

1−uk
2)−f (uk

1−uk−1
2 )

m1⋅ük
2=−

dV

duk
2=−g (uk

2−uk
1)−f (uk

2−uk +1
1 )

(34)

In fact, the total number of differential equations to be solved is 2N, where N is the order of Avogadro's number 10 23. 

But due to the linearity of the problem, the solution can be written directly:

uk
1(t )= 1

√2 Nm1

A1⋅ei (ω t+qak )

uk
2(t)= 1

√2 Nm2

A2⋅e i(ω t+qak )
(35)

g g gff 1 1 1
2 2

a a

unit cell nunit cell n unit cell n+1 unit cell n+2unit cell n-1

aa



Substituting the solution into the equations of motion (34), we obtain :

(ω2−
(g+f )

m1
) A1+( g+ f⋅e−iaq

√m1m2
)A2=0

( g+ f⋅e iaq

√m1 m2
)A1+(ω2−

(g+f )
m2

)A2=0

   , or in matrix form  Dss '⋅A s '=ω2⋅A s    , here
(36)

Dss '=(−((g+ f )
m1

) ( g+ f⋅e−iaq

√m1 m2
)

( g+f⋅e iaq

√m1m2
) −((g+ f )

m2
) )−so called dynamical matrix, and A s=(A1

A2) (37)

This is a system of linear equations to find the amplitude of vibrations of atoms 1 and 2 and have non trivial  

solution if determinant of system is equal to zero: 

| −g+ f
m1

g+ f⋅e−iaq

√m1 m2

g+f⋅eiaq

√m1m2

− g+ f
m2

|=0 (38)

This is a 4th order equation with respect to frequency. The solutions are looks like so:

ω1
2(q )=1

2
ω0

2(1−√1−γ2 sin2( qa
2 ))(39.1)

ω2
2(q )=

1
2
ω0

2(1+√1−γ2sin 2( qa
2 ))(39.2)

, here ω0
2=

(g+f )(m1+m2)
m1m2

,γ2=16
g⋅f

(g+ f )2⋅
m1 m2

(m1+m2)
2 . (39)

The expression (38) define two dispersion branches , one of which (39.1) shall be termed acoustic and the other (39.2) 

optical. 

The first solution have the name “acoustic” because in low frequency region (near zero point) frequency of 

harmonic wave is proportional to wave vector ω=v⋅q , v-the speed of sound propagating along a chain of atoms.

Figure 6 Figure 7
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Let consider the nature of atomic motion for optical and acoustic branches near zero value of q. 

For q=0, ω1=0 and   ω2=ω0.  Here   ω0
2=

(g+f )(m1+m2)
m1 m2

.

For first solution, describing the acoustic vibrations of atoms for long wave harmonic wave we have from 

(36):

A1

A2

=√m1

m2

 by using (5) for displacement of atoms
u1

u2

=1  or  u1=u2 (40)

This means that for long waves acoustic vibration all atoms move synchronously at the same distance. The crystal is  

displaced as a whole.

For second solution, describing the optical vibrations of atoms for long wave harmonic wave we have from 

(36):

A1

A2

=−√m2

m1

 by using (5) for displacement of atoms
u1

u2

=−
m2

m1

 or  u1⋅m1+u2⋅m2=0 (41)

The last expression can be interpreted like this: there are two sublattices formed by type 1 and type 2 atoms. In the  
long-wavelength limit of optical vibrations, the two sublattices vibrate in opposite phases, so that the center of mass 
remains stationary. If these atoms have opposite charges, this type of vibration becomes active in the optical range and  
can emit and absorb electromagnetic energy. That why this type of vibration is called "optical vibration".

The density of vibrations can calculating by the same equation (14).But now we have two functions: g(ω)a and 
g(ω)o for the acoustic and optical branches, respectively:

Etot=
2N
π ∫

0

ωac ℏω  ga(ω)

(e
ℏω
kT −1)

d ω+2 N
π ∫

ωopt

ω0 ℏω  go(ω)

(e
ℏω
kT −1)

dω (42)

3.3 Harmonic vibration of 3d lattice.
We assume that we have a complex 3d crystal containing a set of 

different atoms in a unit cell. As always all unit cells are equivalent. The 
crystal temperature is zero and the lattice is stable. 

We will start by describing the arrangement of atoms in the lattice and we 
do this for a BaTiO3 crystal (figure 8). The unit cell is cubic  (Oh-symmetry) 
and each unit cell contains 5 atoms: one titanium Ti, one barium Ba, and 
three oxygen atoms O1, O2, O3. All these atoms are marked with an asterisk 
in Figure 8 (all other atoms are located in the next unit cells.). Note that the 
oxygen atoms are chemically identical, but from a crystallographic point of 
view (in terms of symmetry) they are different, so they are marked with 
different symbols. The position of unit cell defines the vector:

Rn1 ,n2 , n3
=a1⋅n1+a2⋅n2+a3⋅n3 ,  here, a1 , a2 ,a3  - basis vectors

and  n1,n2,n3 –  integer  numbers.  The  position  of  atom  with  type  s (for 
example in our case s=1 for Ti, 2 for Ba,3 for O1,4 for O2 and 5 for O3 ) can be calculated as follows:

                                                                     Rn 1 ,n 2 ,n3
s =Rn 1 ,n 2 ,n 3+rs (43)

Figure 8



rs -gives the position of s-atom inside of the given unit cell (we assume that zero point inside of unit cell coincide with 
position of Ba* atom). The lengths of basis vectors are the same and equal  to a (for barium titanate it equal 4A). 

The positions of the atoms (the coordinate of the vector r) can be determined from the table 1. 
Denote the displacement of atom type s in unit cell n={n1,n2,n3} in direction α as:

uα , n
s ,   heren  is a combination of three indices { n1 , n2 ,n3 } (44)

 If the number of unit cells in x direction is equal N1 in y direction N2 and in z direction N3, so the total number of unit 
cell in whole crystal  N=N1⋅N 2⋅N 3  and total number of atoms can be calculated as follows:

 

Natoms=N⋅N atoms in unit cell (45)

The total potential energy of crystal can be expanded into a power series with respect to displacement of atoms:

V=V (0)+∑
α ,n , s

d V
d uα ,n

s |u=0⋅uα , n
s + 1

2
⋅∑

α ,n , s
β , n ' , s '

d2V
duα , n

s duβ ,n '
s ' |u=0⋅uα ,n

s ⋅uβ ,n '
s ' +... (46)

In (46) V(0) – total potential  energy of the crystal in the ground state (all  atoms are in their equilibrium 
positions).

The second term is zero due to the stability of the crystal (all derivatives 
dV

duα ,n
s

=0  for uα ,n
s =0 ). 

We investigate the vibrations of atoms in a harmonic approximation, which means that all terms in (46) with an 
order higher than the second must be neglected (linear approximation).  Finally  for harmonic crystal total energy is  
looks like so:

V=V (0)+ 1
2
⋅∑

α , n ,s
β ,n ' , s '

d2V
duα ,n

s duβ ,n '
s ' |u=0⋅uα ,n

s ⋅uβ ,n '
s '

(47)

Instead of the second order derivative, you can use the corresponding 6th order matrix:

Cartesian 
coordinates 
(in A)

Fractional  coordinates

rx ry rz q1=rx/a1 q2=ry/a2 q3=rz/a3

Ti 2. 2. 2. 0.5 0.5 0.5

Ba 0. 0. 0. 0.0 0.0 0.0

O1 2. 2. 0. 0.5 0.5 0.0

O2 0. 2. 2. 0.0 0.5 0.5

O3 2. 0. 2. 0.5 0.0 0.5

Table 1



Φαβ( ss '
nn ')= d2V

duα ,n
s duβ ,n '

s ' |u=0 (48)

Matrix (48) can be interpreted as a force constant for a spring connecting atoms (s,n) and  (s’,n’), displaced in 
directions α and β, respectively (see (47)). After the replacement (48) to (47): 

V=V (0)+ 1
2
⋅∑

α , n ,s
β ,n ' , s '

Φαβ ( ss '
nn ')⋅uα ,n

s ⋅uβ ,n '
s '

(49)

Force acting on atom {s,n} in α-direction could be calculated as follows:

Fα ,n
s =− dV

duα , n
s =− ∑

β ,n ' ,s '

Φαβ( ss '
nn' )⋅uβ , n'

s '
(50)

The  equation  (50)  gives  us  another  important  relationship  for  the  elements  of  the  force  matrix.  For  atoms  in  
equilibrium positions (all displacements are zero), the force 50 should also be zero. If we move all the atoms the same 
distance and in the same direction, the situation will not change. it means that:

0=∑
β

u0∑
n' , s '

Φαβ ( ss '
nn ')=>∑

n ' , s'

Φαβ( ss '
nn ')=0 (51)

The classical equation of motion is:

ms⋅üα ,n
s =− dV

duα , n
s (52)

By using (48):

ms⋅üα ,n
s =− ∑

β ,n ' , s'

Φαβ( ss '
nn ')uβ ,n '

s '
(53)

Total number of the second order differential equations is 3sN and at the same time this is a dimension of matrix (48).
Do not forget that n is complex index {n1,n2,n3}. 

Due  to  the  linearity  of  the  equation  of  motion  (forces  acting  on  an  atom have  a  linear  dependence  on  
displacement) solution of   (53) is harmonic function :

uα ,n
s = 1

√2ms N
Aq eα

s (q)ei (ω (q)t+q Rn
s )

(54)

here Aq – amplitude of harmonic wave with fixed value of wave vector q={q1,q2,q3}, es
α(q)- polarization vector (basis 

vector) describing the direction of atoms displacement.
After the substitution to (53):

ω2⋅√ms⋅Aq⋅eα
s (q)⋅e iqRn

s

= ∑
β ,s ' , n'

Φαβ(
ss '
nn'

)⋅eiqRn '
s '

⋅
Aq

√ms '

⋅eβ
s ' (q ) (55)

or after a little simplification:



ω2(q )eα
s (q)=Dαβ

ss ' (q)eβ
s '(q) (56)

here 

Dαβ
ss ' (q)=− 1

√ms ms'

∑
n '

Φαβ (
ss '
0 n '

)⋅e iq(Rn '
s' −R0

s) is the dynamical matrix of crystal, here n=0 (57)

(56)  is a system of 3s linear equations for 3s variables  eα
s (q) . The nontrivial solution exist if determinant of this 

system of equations is equal to 0.

|Dαβ
ss ' (q)−ω2(q)δαβδs s '|=0 (58)

If we assume that the elements of the dynamic matrix Dαβ
ss ' (q)  are predefined (This can be done by fitting to 

experimental data or from direct calculations by solving the Schrödinger equation and using the Hellman-Feynman 
theorem (we will talk about this a little later)) the (58) give us the equation order 3s  with respect to ω2.  Clear that 
total number of different functions ω2(q) in this case is equal to 3s  of which 3 are acoustic and 3s-3 optical branches 
(or the different harmonic waves). For example for BaTiO3 we have 15 (3 acoustic, 12 optical) specific harmonic 
waves. Substitution calculated functions  ω2

j (q),j=1...3s to (56) we will get the polarization vectors eα
s (q) . 

Mathematically, this problem can be solved as the problem of diagonalizing a dynamic matrix Dαβ
ss ' (q) . There 

is  a  large  set  of  programs  in  Fortran,  Matlab,  Python  for  that.  After  diagonalization,  everything  the  required  
frequencies and polarization vectors will be found automatically. Do not forget to repeat this procedure for different 
values of the wave vector  q (independent parameter).  But where can we get the values of the projections of the 
wave vector q={q1,q2,q3}? We can use for that the periodical boundary conditions (see (7)).
NB! To be more specific, we will carry out further calculations for the CsCl crystal.

The simple cubic unit cell ( Γc  lattice, space group symmetry is Pm-3m (221); https://www.cryst.ehu.es/) of 
CsCl contain two atoms marked by asterisk on figure 9. The length of basis vector (Cs-Cs or Cl-Cl minimal distance) 
equal to 4.1 A. Fractional (Direct) coordinate of atoms inside of  unit cell are looks like  so: Cs (0.5,0.5,0.5); Cl  
(0.,0.,0.). Clear that a1=a2=a3=a. 

We assume that  the  crystal  is  sufficiently 
large and have N1 unit cells in a1 direction, N2 in a2 
direction and  N3 in a3 direction. The lengths of lattice 
in  every  direction   is  equal  L1=N1 a,  L2=N2a  and 
L3=N3a  respectively.  Due  to  periodical  boundary 
condition and using (7) we can write:

ux ,n1 ,n2 , n3

s =ux ,n1+N1 , n2 , n3

s

uy , n1 ,n2 ,n3

s =uy ,n1 , n2+N2 ,n3

s

uz ,n1 , n2 ,n3

s =u z , n1 ,n2 ,n3+N 3

s

(59)

Using Rn 1 ,n 2 ,n 3=a1⋅n1+a2⋅n2+a3⋅n3 ,  and (54,59):

e iqaN1 q1=1 e iqaN2 q2=1 e iqaN3 q3=1 , (60)

 do non forget that in case of CsCl q1=qx, q2=qy, q3=qz .

Analogically (9) we will get equation for calculating the values for wave vectors:

figure 9



           qx=q1=
2 pi
L1

n1 , andn1∈[−
N1

2
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N 1

2
]

q y=q2=
2 pi
L2

n2 , and n2∈[−
N 2

2
,+

N 2

2
]   or in general qα=

2 pi
aα

k α , andkα∈[−1
2

,+ 1
2
] , here

           qz=q3=
2 pi
L3

n3 ,and n1∈[−
N3

2
,+

N3

2
]  kα is dimensionless wave vectors.

(61)

Similarly  to  (9),  nonequivalent  values  of  wave  vectors  fill  a  cube  with  an  edge  length  equal  to   
2 pi
Lα

.  The 

corresponding cube (have the name Brillouin zone) with some standard symmetrical directions (but only for Γc lattice) 
is shown in figure 10 and table 2.  The  Brillouin zone (https://en.wikipedia.org/wiki/Brillouin_zone) is a Wigner-Seits 
primitive unit cell for reciprocal lattice. The description of  Brillouin zones for different crystals (space groups) you 
can find here https://www.cryst.ehu.es/cryst/get_kvec.html.

The analytical calculation of phonons (harmonic vibration) for CsCl you can find in article:
S.K.Shukla, K.K.Mishra , A.N. Pandey , G.K.Upadhyay  and K.S.Upadhyaya “Theoretical analysis of phonon 
dynamical behaviour of Cesium Chloride at various temperatures”, Journal of Applied Physics (IOSR-JAP) Volume 2,  
Issue 4 (Nov. - Dec. 2012), PP 26-34

Symmetrical 
Points

kx ky kz

Γ 0 0 0

X 0 0 0.5

M 0.5 0.5 0

R 0.5 0.5 0.5

figure 10 table 2

Figure 11. 
Phonon Dispersion Curve for CsCl at 78 K. 
∆-longitudinal (L-vibration), o-transverse waves(T-vibration).

Figure 12. 
Density of state (DOS function)



Step by step calculation process  is looks like this:
1. Potential energy is separated into two parts LR(long range) or Coulomb and SR(short range) (Equation (1-3)).

2.1 On next step  were calculated element of the matrix of  matrix the force constants with (48). This approach is  
acceptable if we know the form of potential energy. Only in this case we can calculate the derivatives (48).

There are other methods for calculating the members of the force constant matrices (48):
2.2  The  semi-empirical method is based on fitting to experimental data such as: infrared absorption and Raman 
spectra,neutron scattering gives directly the functions ωj(q), elastic constants Cij, bulk modulus and shear modulus, 
heat capacity, etc. Now this method is not used, since it does not allow understanding the physics of processes. This is  
just a description without understanding why this is so.
2.3  Ab-initio approach is implemented in the VASP and PHONOPY software packages. If we move atoms from 
equilibrium positions to the vector uα , n

s , knowledge of this displacement allows us to calculate the elements of elastic 
matrix (48) by using equation (50).The equation (50) is a system of linear equations  with respect to  elements of  
matrics (48).  What about the forces acting on atoms Fα ,n

s ? Answer is: They can be calculated by using  of quantum 
mechanics. The use of crystal symmetry properties makes it possible to sufficiently reduce the number of different bias 
combinations. Currently, this method is the most used because one have a clear quantum mechanical, physical basis.

3. Substitution (48) to (57) give the elements of dynamical matrix.

4.  Diagonalization of  dynamical  matrix  for  different  values  of  wave vectors  q  give  the  frequency of  vibrations,  
functions ω j(q) , here j=1...6. Result of diagonalization presented on figure 11. For high symmetry directions (Γ→X 
or Γ→R) transverse vibrations are twofold degenerate, so the total number of branches is 6, as it should be.  

The results of calculations of frequencies can be compared with  experiments of Infrared Absorption, Raman 
and Neutrons Scattering and used to calculate heat capacity by PHONOPY software .  VASP also calculates elastic 
constants and ω j(q=0)  - frequencies in .
5. The density of vibrations (DOS function) g(ω) -function can be calculated as follows:

g j(ω)=∑
q

δ(ω−ω j(q)) (62)

The equation  (62) is easy to implement in program code and result of this calculations you can see on figure 12.

3.4  LT-splitting in ionic crystals.
As you can see, longitudinal vibrations have a higher frequency than transverse 

vibrations. For optical vibration at the Γ-point , this effect is related to so called LT-
splitting of vibrations for ionic crystals (figure 13). 

It should be emphasized that this effect takes place only for crystals with charged 
atoms. For pure covalent crystals such as Ge or Si, no splitting is observed. Why 
the charge of atoms is so important? 

Detailed theory of this effect you can find in [1](see first lecture) . Here we will 
consider only qualitative description.

Figure 13

Figure 14

a)

b)

  ω
l

  ω
t



Suppose we have two sublattices formed by atoms with opposite charges. Lattice like NaCl.  For long wave limit (q=0  
and wavelength of harmonic wave λ→∞) this two sublattices are vibrating in opposite phase (we need to distinguish 
between longitudinal fig. 14a and transversal vibrations fig. 14b).  
If  the  charge of  atoms is  equal  to  Q,  masses  of  positive and negative atoms are   m+  and m- respectively .   and 
u+  and u -  are the displacement of positive and negative ions from their equilibrium positions. Then the equations of 
motion for ions are looks like so (at q = 0, atoms in one sublattice vibrate synchronously, which means that now it is  
quite sufficient to describe the motion of only one atom of a given type ):

m+

d2 u+

dt2 =−k⋅(u+−u-)+Q⋅E                 m-

d2 u-

dt2 =k⋅(u+−u-)−Q⋅E (63)

In (63) E-electric field strength vector generated by relative displacement of sublattices. By using of reduced mass 
1
mr

= 1
m+

+ 1
m-

 of ions  and normalized relative displacement of  sublattices w=√N e mr(u+−u -)  (see [1]) we will get 

two  separate equations of motion for longitudinal and transversal longwave waves:

d2w t

dt2 =−ω t
2⋅wt

d2w l

dt 2 =−ωt
2 ϵ0
ϵ∞
⋅w l

(64)

Comparison of this equations we obtain Lyddane–Sachs–Teller relation [https://en.wikipedia.org/wiki/Lyddane
%E2%80%93Sachs%E2%80%93Teller_relation]:

ωl
ωt

=√ ϵ0
ϵ∞ (65)

The polarization vector is related to electrical strength vector as follows:

P⃗=ϵ−1
4π

E⃗ (66)

ε-  dielectric  constant  describing the response of  crystal  on external  electric  field.  This  response is  related to the  
deformation of electron shells of ions (electron part of dielectric constant) and to the displacement of ions  (ionic part  
of dielectric constant).  In practice, a static dielectric constant ε0 is  describes the reaction of a crystal to a constant 
external electric field (includes the ionic and electronic parts) and high-frequency dielectric constant ε∞ (includes only 
the electronic part, since the massive ions  do not just have time to shift in a high-frequency electric field). 

It is clear that if the frequency of external electric field is sufficiently large (practically =∞) in this case always 

for any crystal ε∞ =1 and  P⃗=ϵ−1
4π

E⃗=0  - the crystal is not polarizable. 

According to [65], long-wave longitudinal vibrations in ionic crystals have a higher frequency than transverse 
waves. This effect is associated with the generation of an additional electric field in the direction of longitudinal  
vibrations, which effectively strengthens the lattice. This effect decays quickly with distance from the q=0 point.



3.5 Effects related to anharmonicity

The effects of anharmonicity appear if we take into account a terms of order greater than two (third order, 
fourth order, etc.) in expansion (46). The anharmonicity is leads to such very important effects as thermal expansion of  
solids, thermal resistance, etc. Let’s start from thermal expansion. 

Consider a very simple model containing two atoms at a distance R0 at T = 0. For small deflection from 
equilibrium position the corresponding potential energy of interaction is(see Figure 15):

U= β x2

2
−γ x3

3
(67)

As  seen  this  curve  a  little  unsymmetrical  due  to 
anharmonic cubic term. The corresponding force can be 
calculated directly :

F=−dU
dx

|x=0=−β x+γ x2
(68)

The probability of an atom deviating from the equilibrium 
position is by Boltzmann :

f (x)=A e
−

U
kT≈A e

−
β x2

2 kT (1+
γ x3

3 kT
) (69)

The unknown parameter A can be determined from the normalization condition: 

∫
−∞

+∞

f (x)dx=1  the calculations gives A=( β
2π kT

)
1/2

(70)

Now let's calculate the average deviation of the atom from the equilibrium position:

<x>=∫
−∞

+∞

xf (x )dx=(
β

2π kT
)

1 /2

∫
−∞

+∞

e
−
β x2

2kT (x+
γ x4

3kT
)dx=

γkT

β2 (71)

The definition for coefficient of linear thermal expansion is:

dl
l0

=α dT or α=d<x>
dT

1
R0

=
γ k

R0β
2 (72)

As you see the  coefficient of linear thermal expansion depend on parameter of anharmonicity γ. A harmonic (linear) 
crystal does not exhibit thermal expansion. 

The physical explanation for this effect is simple and relates to the asymmetry of the potential energy curve 
due to the anharmonic terms.This leads to a dynamic displacement of the equilibrium position of the atom and thermal 
expansion of the lattice.

The physical phenomenon of thermal conductivity in crystals is associated with the transfer of thermal energy 
(thermal vibrations of atoms) from one point of the lattice to another. For a harmonic crystal, the crystal contains a set  

Figure 15

equilibrium position for different temperatures

T1<T2<T3



of independent and non-interacting harmonic waves, which can be represented as a set of quasiparticle -phonons. Each 
phonon have quasimomentum p⃗=ℏ k⃗ , here k⃗−wave vector of phonon.  In harmonic crystals, phonons do not interact 
and can transfer thermal energy at the speed of sound to any point in the lattice. This means that in this case the  
thermal conductivity is infinitely large. But experiment shows that this is not the case.

But in an anharmonic crystal (cubic term in  (67)) , phonons begin to interact. In this case, it is necessary to  
take into account the so-called three-phonon processes. In this case, a phonon can decay into two phonons, or two 
phonons for collision can create  a new phonon. This three-phonon process leads to the appearance of resistance to the 
movement of phonons. The calculation gives the following expression for the thermal conductivity coefficient:

χ ∝ 1

γ 2T
(73)

The coefficient decreases with temperature, because the number of three-photon processes increases with growing 
temperature.


