
YFX  11  20  -Solid States Physics  and Semiconductors Physics  

First, a few words about the content of our course, it consists of two parts. The first is solid state
physics and the second is semiconductor physics, which will begin in November. In the last week of
November, we will run a test. A week before that, I will ask everyone one question from the topics of
our part of the course. After that, you will have a week to prepare a detailed answer to the question
asked. The final mark for the exam will be set based on the discussion of the topic of the question.

You can find more information about our course here: parsek.yf.ttu.ee/~physics/ssp.
As part of our course, we look at simple models. But, despite the simplicity of the models, we will

try to calculate the real properties of crystals, for example, the heat capacity of crystals, and so on. A
separate part  of our course is  the use of software packages (VASP https://www.vasp.at/  ,  Phonopy
https://phonopy.github.io/phonopy/)  for  calculating  the  basic  properties  of  simple  crystals   such as
optimization of stricture, calculation of elastic properties and phonons spectrum, calculation of band
gap by different ab-initio methods, calculation of optical properties.  

The textbooks you can find in our library or in internet:
1. Ch. Kittel, “Introduction to Solid State Physics”
2. Ashcroft, N.W., Mermin, N.D.  “Solid State Physics”
3. A. Anselm, “Introduction to the theory of semiconductors”  

We will begin from the short review of the  symmetry properties of perfect crystals. 

We will begin from the short review of the symmetry properties of perfect crystals. But what does
it mean - the “perfect crystal”. We assume that the ideal crystal is perfect if it have the infinite periodic
structure  without  any  defects  of  lattice  and  the  atoms  are  in  their  equilibrium  position  -  crystal
temperature is equal to zero.

§  1.1 Crystals point symmetry transformations.  
Point symmetry operations. Proper rotations, reflection, inversion, improper rotations. Point groups.
Translation symmetry. Translation vectors. Allowed to point groups (some examples). Base vectors.
Elementary cell. Primitive cell. Space groups. Classes. Reciprocal lattice.   Wigner-Seitz cell.  Miller
indices.

What we can said about the point symmetry properties of molecules and crystals?  What does it
means? This means that there are a set of symmetry operations (transformations) such that the atomic
or molecular structures remains invariant under that transformations (the macroscopic properties of a
crystal would look exactly the same before and after any of the symmetry operations, body coincide
with itself ).  What kinds of symmetry transformations we can apply to the molecules and lattices to
stay its invariant (do not forget that the molecules is nt a periodic structure)? 

Proper rotation (denotes as C) around some symmetry axes or  “proper” rotations. 
Besides the rotation we can use the other symmetry operations such as:

Reflections (denotes as σ)  in some vertical or horizontal mirror plane. There is two different types of
reflection planes  σh - axis of rotation Cn is perpendicular to this plane, σv - axis of rotation Cn is in the
plane  σv.
Inversion(denotes as I) through a point  (center of symmetry) and their any combinations. 
Rotary-reflection(Improper rotation S) transformation (axis)  is defined as a sequential application 
of two operations  Cn  and σh. 



A good description of point transformations with 3d  illustrations you can find here  
http://symmetry.otterbein.edu.

Example 1 
We  need  to  consider  the  group  of  symmetry  elements  of
regular triangle (figure om left). A triangle can be represented
as  a  molecule  with  three  equivalent  atoms  located  at  each
vertices  of  the  triangle.  As you see we can  define  the next
symmetry transformations for this molecules (regular triangle):
1. Rotations around vertical axes through angles  0, 120, 240
and 360 degrees. It is clear that the first and last transformation
are identical  (because these rotations are  do not  change the
order of vertices numbering).  The non zero minimal allowed
angle of rotation is 120 degree  can be written as  2π/3 or by
other words we have the  3-fold (3-th order)  symmetry axis.
For n-fold rotational axis the minimal allowed angle can be
denoted as 2π/n.

In our case the symmetry transformations  associated with
rotations vertical symmetry axis  can be respectively denoted
as C3

0,C3
1,C3

2,C3
3=C3

0.  Here the down index denote the order
of symmetry axis (in our case is 3) and upper  index define the 1,2 or 3-fold rotations on minimal angle
(C3

0=0,  C3
1=120, C3

2=240,  C3
3=C3

0=E=0 or 360) E-identity transformation.  
2. Rotation  around horizontal 2-fold axis C2

1 (total number is 3) or reflections in vertical planes σv

(total  number is 3). In this case does not matter is  we use the rotations or reflections because the
rotation around the 2-fold horizontal axis and the reflection in the vertical plane change the order of the
numbering of the vertices in the same way.

I have to mark that all above mentioned  symmetry transformations leave a central point fixed so
they called by   point symmetry   elements  . All symmetry elements of given crystal are form the group of
symmetry elements {E, C3

1, C3
2, 3C2} or {E, C3

1, C3
2,σv

1,σv
2,σv

3  }  here   C3
0=C3

3=E. But what does it
means , group of symmetry elements?
The group definition:
The some elements are form the group if they  are obey to the following rules:
1.  If A and B are elements from  group , so their multiplication A*B is the element from the same
group.
2.  (Associativity) for  elements A,B and C  (A*B)*C=A*(B*C)
3. (Identity element) There is an element E in the group so that for every element A, A*E=A.
4. (Inverse element) For each element A from group G exist inverse element A-1 so that A* A-1=E

In our case  additionally i want to do one important remark.  If we numirate all the vertices of a
triangle a complete group of symmetry transformations must realize all possible and allowed options of
the numbering of the vertices.  In our case (triangle) the number of these possibility is 6 and all options
can be realised by 6 symmetry transformations. The result of multiplication of any two elements from
this group give  the element from the same group. 

Example 2 molecules of water. Water molecules consist from 2 hydrogen and 1 oxygen. The angle
between O-H bonds is equal to 104,46 degree. It is clear that these atoms form a triangle. How about a
complete  set  of  symmetry  transformations?  You  have  to  find  all  non  equivalent  symmetry
transformations for this object.  Can use http://symmetry.otterbein.edu.

  Example 3 Symmetry of square molecules. On left figure all vertices are equivalent, since all sides

http://symmetry.otterbein.edu/
http://symmetry.otterbein.edu/


are of the same length. On right figure atoms are pairwise identical. You have to find all non equivalent
symmetry transformations for these two mole  c  ules.  

 

Examples of some simple point groups:
rotation through 180 degree  about the height
1. Cn group

These groups consist only a symmetry axis of the order n, i.e., the body 
coincides with itself if it  was rotated around the axis through an angle 2*pi/n,  
This group consists of n elements, only rotations Cn={Cn

1 ,Cn
2 ... Cn

n=E }

The object on the left has a  symmetry group  C3={ E, C3
1, C3

2}.
The symmetry of Hydrogen peroxide H2O2  is   C2.

Some additional examples for  molecules with that type of symmetry you can
find here:  https://symotter.org/gallery

2. Cnv group
This  group  can  be  presented  as  a   sum  of  group  of  pure  rotations  Cn  and

reflections in vertical planes  Cnv=  Cn+ σv.

The object on the left has a  symmetry group   C4v={E,C4
1,C4

2,C4
3,σv

1,σv
2,σv

3,σv
4}.This

group consist four rotations about vertical axes through pi/2 degree and reflections in 
vertical planes.

The symmetry of Water molecules H2O  is  C2v.

Some additional examples for  molecules with that type of symmetry you can find
here:  https://symotter.org/gallery

3. Cnh group
This  group  can  be  presented  as  a   sum  of  group  of  pure  rotations  Cn  and

reflections in horizontal  planes  Cnv=  Cn+ σh.

The object on the left has a  symmetry group C4h={E,C4
1,C4

2,C4
3,σh}

This group consist four rotations about vertical axes through 90 degree and  planes
perpendicular to a symmetry axes order 4. 

Some practical examples for  molecules with that type of symmetry you can find
here:  https://symotter.org/gallery



4. Dn (dihedral group)
If  we  add  the  horizontal  symmetry  axis  C2 perpendicular  to  a  vertical

symmetry  axis  Cn so  we  get  the  new  group  of  symmetry  Dn ( Cn axis  is
bilateral).

The object on the left has a  symmetry group  D4={E,C4
1,C4

2,C4
3, u1, u2, u3, u4}

This group consist four rotations about vertical axes through pi/2 degree and  
4 2-fold symmetry axes  perpendicular to a symmetry axes order 4. 

Some practical examples for  molecules with that type of symmetry you can find
here:  https://symotter.org/gallery

5. Dnh group

This group can be presented as a sum of group Dn and the reflection in horizontal plane σh. 

The  diborane  molecules  B2H6 has  a   symmetry  properties
describe the group of symmetry  D2h ={E, 3C2 , I, σh

1, σh
2, σh

3} .

Some additional practical examples for  molecules with that type
of symmetry you can find here:  https://symotter.org/gallery
 

6 .Td group (tetrahedron complete  group of the symmetry transformations)                                     

Td={E,4C1
3,4C2

3, 3C2,6σd,  3S4
1,3S4

3}  total  number  of  a  symmetry
elements is 24

Some practical examples for  molecules with that type of symmetry
you can find here:  https://symotter.org/gallery.

You  can  find  a  description  of  all  symmetry  elements  at
https://symotter.org/gallery.

7. Oh group ( complete set of the symmetry transformations for Cube)

Oh={E,6C2, 4C1
3, 4C2

3,  3C1
4, 3C2

4, 3C3
4,  3σh, 6σd, 3S4

1,  3S3
4, 4S1

6, 4S5
6,I} total number of symmetry

elements is 48.



You can find a description of all symmetry elements at https://symotter.org/gallery.

Some additional  practical  examples for  molecules with that type of symmetry you can find here:
https://symotter.org/gallery

8,9,10    the last 3 examples of the simple molecules.

                    BH                                                 BrF5                                          Benzene  

You have to find and describe  the complete symmetry properties of the presented molecules  !!!
A complete description can be founded here:  http://symmetry.otterbein.edu  .  

So,  we  have  the  next  symmetry  transformations  describing  the  point  symmetry  properties  of
perfect crystals. First one is proper rotations the next is  reflections, inversion and improper rotations. 

The second type of symmetry properties of ideal crystals is associated with the displacement of the
crystal as a whole by a certain translation vector R. This property of symmetry is called the translation
symmetry of the lattice. 

Not all possible displacements are lattice symmetry transformations, but only those that leave the
crystal unchanged (invariant transformations).  Any vector of lattice displacement (translation) in 3d
space can be presented in the next form:

R⃗=n1⋅a⃗1+n2⋅a⃗2+n3⋅a⃗3,  here n1 , n2 , n3 coordinates of vector R⃗ ,  are real numbers . (1)

The a1,a2,a3 are the so called basis vectors of lattice. The choice of base vectors is completely free and
ambiguous. For 2d lattice the possible choice is looks like so as presented at figure 1. Parallelepiped
built on the basis vectors  is called the unit cell (figure 2).  It is clear that the unit cells, in figure 2, fill
the entire lattice without gaps (and all unit cells are equivalent). Uncertainty of choice of basis vectors
can be avoided by applying additional rules for basis vectors: 

1. Choice the vectors with minimal possible length,
2. Keeping in mind that the displacement of lattice on any basis vector  ai  or any their
combination (1)  must be invariant. 

(2)

http://symmetry.otterbein.edu/


At figure 1 and 2 you can see the possible
choice for basis vectors and corresponding unit
cells.  At figure 3 represented the basis vectors
for  2d  lattices  satisfied  to  conditions  (2).  The
corresponding  unit  cell  have  the  name  –
primitive unit cell. It is clear that for the basis
vectors  satisfying  (2)  (primitive  unit  cell),  the
coordinates of the translation vector (1) must be
an integer and can play the role of a unit  cell
number. 

The translation vector has very useful and
practical  applications  for  determining  the
position  of  any  atom in  a  crystal  lattice.  The
position  of  atom  type  s  in  unit  cell  with
coordinates  (n1 , n2 ,n3) could be presented as

follows:

R⃗n1 ,n2 , n3

s =R⃗n1 ,n2 , n3
+ r⃗ s (3)

r⃗ s -is  vector  of position of  atoms inside of any unit  cell  (all  cells  are  equivalent).  On figure 4

presented some examples of 3d lattices. The detailed description you can find below. 

figure 2figure 1

figure 3
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a) Basis vectors for simple cubic unit cell  Γc. Primitive unit cell is cubic and  simple (contains 1

atom).

b) Basis vectors for volume centered cubic unit cell (BCC – or body centered cell)   Γc
v. 

c) Primitive unit cell for Γc
v unit cell is simple (contains 1 atom).

d)Basis vectors for face centered cubic unit cell (FCC – face centered cell)   Γc
f. 

e) Primitive unit cell for  Γc
f unit cell is simple (contains 1 atom).

f) Lattice structure and basis vector for barium tinatate ferroelectric crystal (BaTiO3). Primitive

unit cell is a simple cubic and contains 5 atoms Ba-1 atom, Ti-1 atom, O-3 atoms. Despite the

oxygen atoms are equal form chemical point of view but they  are crystallographically different .

The whole crystal can presented as a combination of five Γc sublattices: Barium,Titanium and 3

Oxygen.

g) Lattice structure and basis vector for rock salt crystal (NaCl). Primitive unit cell is a face

centered  cubic and contains 2 atoms Na-1 atom, Cl-1 atom. The whole crystal can presented as a

combination  of  two  Γc
f   sublattices:  natrium and  chlorine.  The  entire   NaCl  crystal  can  be

represented as a combination of two  Γc
f   sublattices, with one sublattice shifted relative to the

other by a half of the side length  of cube.

h)  Lattice  structure  and  basis  vector  for  silicon,dimond  or  germanium   crystals  (Si,C,Ge).

Primitive unit cell is a face centered  cubic and contains 2 silicon  atoms.  The entire Si crystal can

be represented as a combination of two Γc
f sublattices, with one sublattice shifted relative to the

other by a quarter of the main  diagonal length.

i) Lattice structure and basis vector for cesium chlorine crystal (CsCl). Primitive unit cell is a

simple cubic and contains 2 atoms Cs-1 atom, Cl-1 atom. The entire crystal can presented as a

combination of two Γc sublattices,with one sublattice shifted relative to the other by a half of the

main  diagonal length.

j)  Lattice structure and basis vector for Zinc Sulfide or Gallium Nitride crystal (ZnS, GaN). This

option is similar to the Si crystal.

k)  Lattice structure and basis vector for graphite crystal. Primitive unit cell

is a hexagonal. 

I want to emphasize that there is no need to always use a primitive unit cell to

describe the physical properties of a crystal (do not forget that all unit cells are

equivalent).  This  choice  simply  minimizes  the  number  of  objects  to  explore  -

number of atoms (red vectors). For example, for the Γc
f  (figure 5) lattice, it is necessary to take into

account only one atom located in a primitive unit cell. For a non-primitive unit cell (just a unit cell,

figure 5



green vectors), the number of atoms should be increased from 1 to 5. Sometimes, for example, to study

the properties of defects in solids, instead of one primitive unit cell, it is necessary to use a supercell

consisting of several primitive cells or just unit cells (the green vectors) .

As you see the crystal has two different kind of symmetry transformations: the  point symmetry

transformations and translations. The combinations of all elements of the different point-groups with

the allowed displacements (translations) of lattice give us all possible symmetry transformations of

lattice or space group of crystal. But  we know that the number of different point groups is infinite. 

In  1919  Paul  Niggly  demonstrate  that  for  simple  lattices  there  are  only  seven   point  groups

symmetry transformations compatible with translations  of crystals. Only 7 groups from the infinite

number of point groups can be used for the building of any real lattices. If we inspect all points groups

we will establish that only these groups are compatible with the translations of crystals: S2  C2h  D2h  D3d

D4h   D6h  Oh . This give a very useful ability for classification of different crystal lattices. The seven

point groups specified above constitute seven crystal systems, the designation  for them being: 

1) triclinic (S2  )  
2) monoclinic (C2h) 
3) orthorhombic (D2h)  
4) tetragonal or quadratic (D4h) 
5) rhombohedral or trigonal (D3d)  
6) hexagonal (D6h) 
7) cubic (Oh)

Auguste Bravais demonstrated that there are altogether 14 types of simple lattice (Bravais lattice)

corresponding to the seven systems (tables 1 and 2).

α            β           γ
The lengths of basis

vectors 
a1          a2         a3

 Bravis lattice

Triclinic         α≠β≠γ  a1≠a2≠a3 Γt

Monoclinic α≠β=γ=90 a1≠a2≠a3 Γm ,Γm
b

Orthorhombic α=β=γ=90 a1≠a2≠a3 Γo ,Γo
b,Γo

v
 ,Γo

f

Tetragonal α≠β=γ=90 a1=a2≠a3 Γq ,Γq
v

Rhombohedra α≠β=γ≠90 a1=a2=a3 Γrh 

Hexagonal α=120β=γ=90 a1=a2≠a3 Γh

Cubic α=β=γ=90 a1=a2=a3 Γc ,Γc
v,Γc

f
 

Table 1  Bravais lattices.

Table 2



Any possible crystal lattices we can build by using only 14 Bravais lattices or as a combination of

a few Bravais lattices from the same class. 

Some additional examples of real 3d structures:

1. Li,Na,K,Rb,Cs,Ba= Γc
v

2. Cu,Ag,Au,Al,Pb,Fe,Ni,In,Pt=Γc
f

3. Be,Mg,Zn,Cd= Γh

4.   Lattices with the structure of NaCl   =  Γ  c
f

 NaCl   sodium clorine, The following substances are crystallized in this structure,this is a prototype of

such lattices.

LiH, NaF, NaBr, NaI, Kcl, RbBr, MgO, SrO, BaO, AgBr

5.   Lattices with the structure ZnS Zinc-Blend (zinc sulphide)  =  Γ  c
f

SiC, GaP, InP, CuCl, CuBr, CuI, GaN



6.   Lattices with the structure of Wurzite   =  Γ  h

BeO,CuI,ZnO,AgI

7.   Lattices with the structure of Diamond   =  Γ  c
f

Ge,S,C

8.   Lattices with the structure of CsCl   =  Γ  c

CsBr,CsI,lCl...

9.   Lattices with the structure of  BaTiO3    =  Γ  c

PbTiO ,SrTiO3

If we take into account all possible point group symmetry elements, translations, glide planes and

screw axes we will see that there is only 230  possible space groups (crystal systems) describing any

symmetry properties of the any crystal at nature. 

As you can see,  the choice is  finite https://en.wikipedia.org/wiki/Space_group. There is  a very

useful resource on lattices symmetry properties (Bilbao server)  https://www.cryst.ehu.es/.  And open

database with describing of different crystal lattices  http://www.crystallography.net/cod/. The crystals

structures  here  presented  in  .cif files  and  can  be  visualized  by  VESTA free  software  https://jp-

minerals.org/vesta/en/.

It is clear that the volume of unit cell we can calculate as mixed multiplication of basis vectors:

V 0=a⃗1⋅( a⃗2× a⃗3) (4)

§  1.2 Wigner-Seitz cell  

There are different ways of choosing a primitive

unit cell. One of these ways is the Wigner-Seitz-cell.

A unit cell built on the basis vectors for a primitive cell

does not always reflect all the symmetry properties of

the lattice. Compare d) and e). The Wigner-Seitz cell

has all the symmetries of the crystal. 

It is constructed by choosing one atom (e.g. bcc: central atom). Then draw lines to the nearest

neighbours and cut all the lines in half with a plane. The Wigner-Seitz cell consists of all points that can

be reached from the central atom without crossing one of those planes. It also has the same volume as

any other primitive unit  cell  and can also be stacked on the Bravais-lattice to construct the whole

crystal. 

http://www.crystallography.net/cod/
https://www.cryst.ehu.es/


Example. We consider the Γc
f  cubic Bravais lattice. 

1. For cubic unit cell (the green basis  vectors) basis vectors can be presented as

follows:    a1=(a,0,0); a2=(0,a,0); a3=(0,0,a). The volume of unit cell is equal to

V0=a3.

2. For primitive unit cell :  a1=(a/2,a/2,0); a2=(a/2,0,a/2); a3=(0,a/2,a/2). By using

(4) we will get V0=a3/4.
     

§  1.3 Reciprocal lattice  

As we know, a unit cell is the smallest part of a crystal that can be used to restore an entire crystal.

This means that it is sufficient to calculate any physical property in only one unit cell. Because all

elementary cells are equivalent. This means that the function describing some physical property of the

crystal is a periodic function with the periodicity of the basis vectors. But any periodical function could

be expand into a Fourier series:

U ( r⃗ )=∑⃗
b

U b⃗⋅e i⋅b⃗ r⃗=∑⃗
b

U b⃗⋅ei⋅(b x x+b y y+bz z)
(5)

 Here 

b⃗=g1 b⃗1+g2 b⃗2+g3 b⃗3 (6)

 is a vector in reciprocal space and b⃗1 , b⃗2 , b⃗3 basis vectors in reciprocal space. Why is such a strange 

name?  The answer is r -vector have dimension meter and b-vector 1/m, reciprocal meter. Due to the 

periodicity of the lattice with the periodicity vector (1):

U ( r⃗ )=U ( r⃗ + R⃗n) (7)

After substitution (5) to (7) 

U ( r⃗ )=U ( r⃗ + R⃗n)=∑⃗
b

U b⃗⋅e i⋅⃗b r⃗=∑⃗
b

U b⃗⋅ei⋅⃗b r⃗ ei⋅⃗b R⃗n

(8)

But this is possible only if : e i⋅b⃗ R⃗ n=1  and n1⋅⃗b⋅a⃗1+n2⋅⃗b⋅a⃗2+n3⋅⃗b⋅a⃗3=2⋅π⋅ some integer number.

It can be shown that it is possible if basis vectors of reciprocal lattice b⃗1 ; b⃗2 ; b⃗3   and basis vectors of 
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unit cell a⃗1 ; a⃗2 ; a⃗3  are relаted as follows:

b⃗1=
2π
V o

(a⃗2×a⃗3)

b⃗2=
2π
V o

(a⃗3×a⃗1)

b⃗3=
2π
V o

(a⃗1×a⃗2)

  Vo- volume of unit cell. (9)

Example. We consider the FCC (Γc
f)  cubic Bravais lattice. 

1. For cubic unit cell (the green basis  vectors) basis vectors can be presented
as follows:    a1=(a,0,0); a2=(0,a,0); a3=(0,0,a). The volume of unit cell is  
equal to V0=a3. The basis vector for reciprocal lattice could be calculated by
(9):b1=2π(1/a,0,0); b2=2π(0,1/a,0); b3=2π(0,0,1/a).

    2. For primitive unit cell :  a1=(a/2,a/2,0); a2=(a/2,0,a/2); a3=(0,a/2,a/2). By
using (4) we will get V0=a3/4.
b1=2π/a3(1,-1,-1); b2=2π/a3(-1,1,-1); b3=2π/a3(1,-1,-1).
To this set of basis vectors there corresponds BCC unit cell. It means that the 

reciprocal lattice for FCC crystal is BCC lattice. And vice versa the reciprocal 
lattice for BCC crystal is FCC lattice.

§   1.4 Symmetry of the physical tensors.  

§   1.4.1 Tensor of conductivity.  

Generally the Ohm low in tensor presentation is looks like so: 

jα=σα ,β⋅Eβ (10)

j- vector of the density of currant, E-strength vector of electric field, σ-second rank conductivity tensor.
It is clear that any symmetry transformations (rotations, reflections, etc.) of the Crystal do not change
its  physical properties. For a cubic crystal,  we take into account only rotations around the axis of
symmetry of the 4th order (do not forget that the total number of elements of the point symmetry group
for a cube Oh is 48). If R is the crystal symmetry transformation matrix then:

R⋅⃗j=R⋅σ⋅E⃗=R⋅σ⋅R−1⋅R⋅E⃗ (11)

symmetry transformation should not change the conductance tensor(the physical property):

σ=R⋅σ⋅R−1 (12)
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The matrix of rotations around the x,y and z axes by an  angle Θ is: (13)

The matrix of transformation for C4
1 rotation around z axis is looks like so:

    C4
1=(0 −1 0

1 0 0
0 0 1)       C4

2=(−1 0 0
0 −1 0
0 0 1) σ=(

σ xx σ xy σ xz
σ yx σ yy σ yz
σ zx σ zy σ zz

)
(C4

1 )−1=( 0 1 0
−1 0 0
0 0 1) (C4

2)−1=(−1 0 0
0 −1 0
0 0 1)

(14)

  
Combination of matrices according to (12):

C4
1⋅σ⋅(C4

1)−1=(0 −1 0
1 0 0
0 0 1)(

σ xx σ xy σ xz
σ yx σ yy σ yz
σ zx σ zy σ zz

)( 0 1 0
−1 0 0
0 0 1)=(

σ yy −σ yx −σ yz
−σ xy σ xx σ xz
−σ zy σ zx σ zz

) (15)

Comparing the result of multiplication with the original σ matrix we will see that:

σ=( σ xx σ xy 0
−σ xy σ xx 0

0 0 σ zz
) (16)

Applying another symmetry transformations will give the following final result for σ:

σα ,β=σ⋅(1 0 0
0 1 0
0 0 1) (17)

It means that to describe the  properties of conduction  for cubic crystal we need to know not all nine
members  of  the  conduction  matrix  but  only  one.  Due  to  the  symmetry  properties  this  matrix  is
diagonal.  As  you can  see,  knowledge  of  the  crystal  symmetry  can  help  to  reduce  the  number  of
parameters describing the physical properties of the research object.



§   1.4.2 T  he stiffness tensor   (  https://en.wikipedia.org/wiki/Linear_elasticity  )  

The equation for Hooke's law is: 
σα ,β=Cα ,β, γ ,δ⋅ϵγ, δ (18)

here: σ-stress tensor,  C-stiffness tensor (rank 4),  ε-strain (deformation) tensor. In the same way, for a
cubic crystal, it can be shown that instead of 81 stiffness tensor terms, it is sufficient to determine only
3 of them: Cxxxx=C11, Cxxyy=C12, Cyzyz=C44.

§   1.5   Miller ind  ices   (  https://en.wikipedia.org/wiki/Miller_index  )  

§   1.6   X-ray crystallography   (XRD method )(  https://en.wikipedia.org/wiki/X-ray_crystallography  )  

Questions:

1. Do integers form a group with respect to addition and multiplication operations? Proof it.This group
is finite?
2. Do real numbers form a group with respect to addition and multiplication operations? Proof it.This
group is finite?
3. What does Abel's group mean? Do square matrices form an Abel group? Proof it.This group is finite?
4. There is a group for 3d vectors with respect to summation? Proof it. This group is finite?
5. Present and describe all elements for point group   C3v.
6. Present and describe all elements for point group   C6h.
7. Present and describe all elements for point group   D3h.
8. How is looks like 3S4

1 transformation if Td group. Why are there 3.
9. Write the transformation matrix for C3

1 and   C3
2  elements of 

 C3 group.
10. Write the transformation matrix for C3

1 and   σh  elements of 
 C4h group.

11. How is looks like transformation matrix for inversion for Oh group.
12. Define the basis vectors of primitive unit cell for crystal MgO. What Bravais lattice is in the basis
of this lattice? Define the cartesian coordinates of basis vectors and all atoms inside of primitive unit
cell.  Define the number of space group. Calculate the volume of primitive unit  cell.  Calculate the
volume of primitive unit cell.
13. Define the basis vectors of primitive unit cell for crystal GaN. What Bravais lattice is in the basis of
this lattice? Define the cartesian coordinates of basis vectors and all atoms inside of primitive unit cell.
Define the number of space group. 
14. Define the basis vectors of primitive unit cell for crystal CsCl. What Bravais lattice is in the basis
of this lattice? Define the cartesian coordinates of basis vectors and all atoms inside of primitive unit
cell. Define the number of space group. Calculate the volume of primitive unit cell.
15. Define the basis vectors of primitive unit cell for crystal CuI. What Bravais lattice is in the basis of
this lattice? Define the cartesian coordinates of basis vectors and all atoms inside of primitive unit cell.
Define the number of space group. Calculate the volume of primitive unit cell.
16. Define the basis vectors of primitive unit cell for  graphite crystal. What Bravais lattice is in the
basis of this lattice? Define the cartesian coordinates of basis vectors and all atoms inside of primitive
unit cell. Define the number of space group. Calculate the volume of primitive unit cell. 
17. Define the basis vectors of primitive unit cell for crystal SrTiO3. What Bravais lattice is in the basis
of this lattice? Define the cartesian coordinates of basis vectors and all atoms inside of primitive unit
cell. Define the number of space group. Calculate the volume of primitive unit cell. 
18. Define the basis vectors of primitive unit cell for crystal CuCl. What Bravais lattice is in the basis

https://en.wikipedia.org/wiki/Miller_index
https://en.wikipedia.org/wiki/Linear_elasticity


of this lattice? Define the cartesian coordinates of basis vectors and all atoms inside of primitive unit
cell. Define the number of space group. Calculate the volume of primitive unit cell.
19. Define the basis vectors of primitive unit cell for crystal TiC. What Bravais lattice is in the basis of
this lattice? Define the cartesian coordinates of basis vectors and all atoms inside of primitive unit cell.
Define the number of space group. Calculate the volume of primitive unit cell.
20. Define the basis vectors of primitive unit cell for crystal CuSO4. What Bravais lattice is in the basis
of this lattice? Define the cartesian coordinates of basis vectors and all atoms inside of primitive unit
cell. Define the number of space group. Calculate the volume of primitive unit cell.
21. Calculate the basis vectors for reciprocal Γh Bravais lattice.

22. Draw the planes for <111> ,<
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in Γc  lattice.
23. The basis understanding of XRD. Bragg's law. What useful information about crystal could be
obtained by XRD method?


