
I. Elements of A. Einstein radiation theory.

In classical electrodynamics, any body moving with acceleration emit electromagnetic energy. The
energy emitted per one second  can be calculated by this way:

W classical=
2e2

3c3
¯̈r here  ¯̈r is  average acceleration.  For harmonic oscillator this  energy is proportional to

amplitude of oscillations. In classical physics charged body radiates energy continuously. 
In quantum mechanics, systems (for example, an atom, a body, a harmonic oscillator, etc.) emit or

absorb  energy  only  when  passing  from  one  discrete  level  to  another  for  example  n→n ' . The  first
consideration  of  the  problem  of  radiation  was  proposed  by  A.  Einstein.  He  introduced  the  coefficients
characterizing  the  induced transitions   (due  to  external  perturbation) Bnn'  and  spontaneous   transitions
Ann ' .The basis idea of Einstein approach is looks like so: if  electron of some system locate on excited

energy level En  then there is a certain probability to per second Ann ' for spontaneous  transition to lower
level  En ' . This transition is accompanied by emission of photon with energy ℏω . If number of such
excited  atoms  is  Nn then  the  energy  emitted  (due  to  spontaneous  transitions)  per  one  second  can  be
calculated as follows:

W s
=Nn Ann' ℏω .

The  spontaneous  transition  is  possible  only  for  transition  from  upper  levels  to  down.  An  external
electromagnetic field leads to the appearance of additional, so called induced, transitions. This transitions are
possible in both directions from top to lower and from down to up. If denote ρ(ω) as a spectral density of
electromagnetic radiation then the emitted and absorbed energies are:

W emitted
i

=N nBnn 'ℏ ω W absorb .
i

=Nn ' Bn' nℏω
In thermodynamic equilibrium state:

Nn Ann'+NnBnn'ρ=Nn ' Bn ' nρ .
The number of electron on levels n and  n’ determined by Maxwell distribution function

Nn=C e
−En / kT Nn '=Ce

−En '/kT .
After substitution to previous equation and simplification for spectral function of radiation ρ(ω) we have:

ρ(ω)=

Ann '
Bnn '

Bn ' n
Bnn'

e
ℏω

kT−1

but  the  Planck  function  for  absolutely  black  body  is ρ(ω)=
ℏω
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comparison  of  two  last  equations  gives  for  Einstein  coefficients  next  relationships: Bnn'=Bn ' n and  for

probability  of  spontaneous  and  induced  transitions  Bnn'=
ℏω

3

π
2c3 Ann' . The  existence  of  spontaneous

transitions from the physical point of view  is very important. This means that in the absence of external
perturbation, the atom always simultaneously passes to the ground state (to the state with minimum energy).
Then the reciprocal value for coefficient Ann '  can be interpreted as the lifetime of electron in a given state
and electron cannot be in an excited state for an infinitely long time. 

But one more question remains. If the induced transition can be explained by the action of an external
electric field (electromagnetic wave), then what external influence leads to the appearance of spontaneous
transitions? What is the physical reason of it? Unfortunately, this explanation cannot be found within the
framework of the classical approach to the electromagnetic field. In quantum mechanics the electromagnetic
wave can be represented as a set of harmonic oscillators (similarly to the vibration of atoms in crystal lattices).
In  the  ground  state,  the  energy  of  a  harmonic  oscillator  has  a  non-zero  value  (zero  oscillations)  and
spontaneous transitions are associated with the influence of this zero oscillations of the electromagnetic field



on the electrons of atoms. Exact calculation show that  Ann '∼|rnn '|
2
=|∫φ

 * r̂ φdV|
2

.  The elements of matrix
Bnn'=Bn ' n can be calculated by using “golden rule” of quantum mechanics.

II. The basis ideas from relativistic quantum mechanics.

II.a    S  pin–statistics theorem  

There  is  a  spin–statistics  theorem in  quantum mechanics  relates  the  intrinsic  spin  of  a  particle  (angular
momentum not due to the orbital motion) to the particle statistics it obeys. In units of the reduced Planck
constant ħ, all particles that move in 3 dimensions have either integer spin or half-integer spin. According to
this theorem all particles can be divided into two classes. 

The first are Bose (bosons) particles, which have an integer spin value, such as 0,1,2, etc. In each
quantum state, there can be an infinitely large number Bose particles. All Bose particles in a given state have
the  same wave  function.  The  probability  of  finding a  particle  in  a  state  with  energy E  (due  to  thermal
excitation) can be calculated using the Bose-Einstein distribution function:

f (E ,T )=
1

eE / kT−1
.

An example of such particles are photons, phonons.
The second are Fermi (fermions) particles, which have an half-integer spin value, such as 1/2,3/2,5/2,

etc. Only one Fermi particles can be located in given quantum state. This rule is called the Pauli exclusion
principle. The probability of finding a particle in a state with energy E (due to thermal excitation) can be
calculated using the Fermi-Dirac distribution function:

f (E ,T )=
1

e(E−μ)/ kT+1
.

Here μ – chemical potential. For metals at room temperature the chemical potential can be replaced by the 
Fermi energy. The proton,neutron,electron are Fermi particles.

II.b Klein -Gordon equations

The Schrödinger equation in the non-relativistic case can be formally obtained from the expression for the
classical total energy:

E=
p2

2m
+U .

The  conversion  from classical  physics  to  quantum mechanics  can  be  carried  out  by  replacing  classical
physical quantities with the corresponding operators. But what kind of operators? In classical physics, the law
of conservation of energy is the result of the symmetry of space with respect to infinitesimal displacements in
time,  and the law of  conservation of  momentum is  the result  of  the symmetry of  space  with  respect  to
infinitesimal  space  displacements.  The corresponding operators  of  space  transformations  (taken from the
theory of  so-called Lie and Poincaré groups) are looks like as follows:

for E→ Ê=i ℏ
d
dt

 and for space displacement in x-direction p̂x→−i ℏ
d
dx

and generally p̂=−iℏ ∇̂ .

After substitution into the previous equation, we have:

i ℏ
d ψ
dt

=−
ℏ

2

2m
Δ ψ+U ψ .

In special relativity  (the potential energy is omitted) the total energy of particle is (see first lecture):
E2
=p2 c2

+m0
2c4 .

Klein-Gordon equation can be obtained by the same way. After substitution energy and momentum with
corresponding operators we will get: 



 
1
c2

d2

dt 2 ψ−Δ ψ+
m0

2c2

ℏ
2 ψ=0

By using of so called d'Alembert operator □=
1
c2

d2

dt2
−Δ finally we have the Klen-Gordon equation for free

particles:

□ψ+
m0

2 c2

ℏ
2 ψ=0 .

This equation can be used to describe properties of so-called Bose particles .

The solution of this equation  (for free particle) is: ψ(t , x)=
1
V
e
i
ℏ
( px x−Et )

where E=±√ p2 c2
+m0

2c 4 . The

negative value of energy should be discarded because there is no mechanism for transition from positive to
negative energies states. But if we take into the account external electromagnetic field (this formally can be

done  by changes E→E+q φ  and p⃗→ p⃗−
q
c
A⃗  , here q-charge of particle, φ – electrostatic potential and

A-magnetic potential) the solution of this new Klein-Gordon equation  can be expressed as a superposition of
solutions for free particle  (due to the fact that this wavefunctions form a complete set of functions). But this
representation is possible only if we take into the account the positive and negative values of energy. Later
this result served as the basis to justify the possibility of the existence of antimatter and these two worlds
(matter and antimatter) can interact through the electromagnetic field. The Klein-Gordon equation is suitable
to describe the properties of non-spin particles.

II.c Dirac equation

The Dirac equation is another representation of the relativistic Shrödinger equation. The Hamilton

operator in relativistic approximation  is looks like this: Ĥ=√ ∑
i=1,2,3

( p̂i c)
2
+m0

2 c4 here 1,2,3≡x,y,z . Dirac

boldly suggested that for Fermi particles (particles with half-integer spin), the square root can be represented
as a simple linear combination of the individual terms of the square root:

√ ∑
α=1,2,3

( p̂αc )
2
+m0

2 c4
=βm0 c

2
+ ∑
i=1,2,3

αi p̂ ic , here αi and β 

are a suitable coefficients but this equality cannot be true for plain numbers. Dirac showed it is possible if you
are  dealing  with  matrices  (the  minimum possible  order  of  the  matrices  for  this  should  be  equal  4).  In
particular, it works if the coefficients are given by :

β=( I 0
0 −I ) α1=(

0 σ x

σ x 0 ) α2=(
0 σ y

σ y 0 ) α3=(
0 σ z

σ z 0 ) and

matrices αi are satisfy to the next conditions (to be consistent with Klein-Gordon equation): αi
2
=β

2
=I , 

for i≠j αiα j+α jαi=0  and αiβ+βαi=0 . Here σx,σy,σy are so-called 2×2 Pauli Spin matrices:

σ x=(0 1
1 0) σ y=(0 −i

i 0 ) σ z=(1 0
0 −1) .The  formal  derivation  of  "classical"  time-dependent

Schrödinger equation.

Finally for Dirac equation we have:

i ℏ
d ψ
dt

=(βmo c
2
+ ∑
i=1,2,3

α i p̂i c) ψ=Ĥ ψ .



The wave function must be a so-called four-component Dirac Spinor function (due to the fact that matrices αi

have order 4): ψ=(
ψ1

ψ2

ψ3

ψ4
) . After substitution matrices and using Pauli units ( ℏ=c=1 ) we have:

i ∂
∂ t (

ψ1

ψ2

ψ3

ψ4
)=i ∂∂ x (

−ψ4

−ψ3

−ψ2

−ψ1
)+ i ∂∂ y (

−ψ4

+ψ3

−ψ2

+ψ1
)+i ∂∂ z (

−ψ3

+ψ4

−ψ1

+ψ2
)+m0(

+ψ1

+ψ2

−ψ3

−ψ4
) .

Frequently Dirac equation can be presented in more compact form by using γ-matrices representation:

(iγ0 ∂
∂ t

+ i γ⃗ ∇⃗−m)ψ=0  here

γ
 0
=(I 0

0 −I ) γ
 1
=(

0 σ x

−σ x 0 ) γ
 2
=(

0 σ y

−σ y 0 ) γ
 3
=(

0 σ z

−σ z 0 ) and can be expanded into matrix

form: 

(
i ∂
∂ t
−m 0 i ∂

∂ z
i ∂
∂ x
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∂ y
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∂ x
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∂ y
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∂ x
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−m
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ψ

1

ψ
2

ψ
3

ψ
4)=(

0
0
0
0
) .

The probability density can be identified as: ψ
 2
=|ψ1

2|+|ψ2
2|+|ψ3

2|+|ψ4
2|and must be normalized on unit.

II.d Some remarks about  magnetic properties of electron and spin.

It is make sense to give the physical justification for the relationship between the Pauli Spin matrices 
and the spin magnetic moment.

The classical magnetic moment for the orbital motion of an electron around nuclei is μ⃗=
q

2m
L⃗ and

corresponding quantum mechanical operator μ̂=
q

2m
L̂ , here L̂- angular moment operator . The  energy

of interaction of the magnetic moment with an external magnetic field  looks like this −μ⃗ B⃗ . 
The Dirac equation for a free electron can be improved by  includes the interaction with an external

electromagnetic  field   (see corresponding substitutions  in  II.b)  this  gives  the so-called  Schrödinger-Pauli

equation. But in this new equation, an additional potential energy appears, which looks like this −
q

2m
σ⃗ B⃗ .

It is important to emphasize that the particle moves translationally in an external electromagnetic field.This
means that this additional energy is associated with the interaction of an external electromagnetic field with
additional internal degrees of freedom of particle related to the its own internal  magnetic field - the Spin.

Then the Spin magnetic moment  is look like so: μ⃗s=
q

2m
σ⃗ or in term of spin vector μ⃗s=

q
m
S⃗ .  It is clear

that the electron Spin does not disappear outside the electromagnetic field. Spin is an additional  physical
property of fermions and Dirac equation describes the behavior of spin-1/2 fermions in relativistic quantum
field theory.


