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31. System of identical particles 
 
 
As follows we start to investigate systems of identical particles, assuming that the forces 
between these particles are absent (similarly, as treating ideal gas, we assume that they are 
mostly quite apart from each other and we neglect the forces acting between particles). 
 
It appears that there is principal difference between classical and microparticles. Classical 
particles may be identical, but since they move on determined trajectories, we may observe 
their motion (at least, in principle) and in each moment say which particles in which points 
are. Microparticles are not identified in the classical sence, since their wave functions overlap 
and their position is given only with certain probability. Therefore if we detect particle in 
some point of space, it is not possible to say which of our particles we have just detected. 
 
Next we denonstrate that in microworld there are two types of microparticles, depending from 
its spin. The difference is, whether the wave function of a corresponding system of particles is 
symmetrical or antisymmetrical in replacements of particles. 
 
31.1 Two identical particles. For simplicity we at first treat the system of two identical 
microparticles. Both of them separately satisfy the equations  
 

)1()1()1(ˆ
1   EH   , 

 

)2()2()2(ˆ
2   EH   , 

 
where )1(Ĥ  is the Hamilton operator of particle 1 and )2(Ĥ  is the same operator for particle 
2 . Since we assume that particles are independent and therefore the energy of the first particle 

1E  does not depend on the position of the second particle, and so the energy of the second 
particle 2E  does not depend on the position of the first particle. We use the following 
notations, indices 1 ja 2 denote the position and quantities which determined the energies of 
particles,   ja   denote other physical characteristics of particles. 
 
If we, for example have some free particle (electron, proton, ...), then in that case the general 

form of Hamiltonian operator is 
M

H
2

ˆ
2  . Free particle with energy E  is described by 

plane wave 
rkieAr
   )(  , 

 

where 2
22 2



 MEkk   , index   characterizises other physical quantities (spin projection, as 

an example). 
 
First of the particles is characterized by its position, therefore 1111 ),,(1 rzyx 

  , the second 
one similarly by 2222 ),,(2 rzyx 

 . The corresponding Hamiltonian operators Ĥ  are 

2

2

1

2

2
)2(ˆ

2
)1(ˆ 

M
Hand

M
H   , 
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where 1  and 2  are Laplace operators, where derivatives are calculated by corresponding 
coordinates. Wave functions are 
 

2211 )2()1( rkirki eAjaeA

     . 

 
Now we assume that there are no interactions between these two particles (forces between the 
particles are absent, or we in some approximation neglect them), then the total Hamiltonian 
operator of our two particle system is 
 

)2(ˆ)1(ˆ)2,1(ˆ HHH   . 
 
What are the wave functions of that two particle system? It is possible to verify that one 
possible wave function is the product of above given functions 
 

)2()1()2,1(     . 
Indeed: 

 )2()1())2(ˆ)1(ˆ()2,1()2,1(ˆ
  HHH  

 

)2,1()()2()1()())2()2(ˆ)(1()2())1()1(ˆ( 2121   EEEEHH   . 
 
Similarly it is easy to verify that the possible wave function is also 
 

)1()2()1,2(     , 
 
where we changed the positions of particles. It is physically obvious, since the total energy 
does not change, if we replace particles. 
 
We have got two different solutions and it is therefore easy to verify that an arbitrary linear 
combination 
 

)1()2()2()1(   ba   
 
is also solution corresponding to the same energy 21 EEE  . 
 
Next we demonstrate that not all linear combinations of solutions are allowed, but only these 
states, which are symmetrical by replacing particles, as 
 

)1()2()2()1(   s  , 
 
or which are antisymmetrical by replacing particles, as 
 

)1()2()2()1(   a  . 
 
31.2 Replacement operator. We define the replacement operator 12P̂  - which replaces 
particles. By definition 
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)1,2()2,1(1̂2  P  , 
 
(its action means the replacement 21 ). 
 
Next we solve the eigenvalue problem of replacement operator 12P̂  and find its eigenvalues 
and eigenfunctions. If we assume that ψ(1,2) is an eigenfunction of 12P̂ , then we must get 
 

)2,1()2,1(1̂2  P  , 
 
where   is the corresponding eigenvalue. Next we show that the eigenvalues of 12P̂  are +1 
and -1. Indeed, if we apply to the eigenvalue problem from left operator 12P̂  and use the 
eigenvalue equation, we get 
 

)2,1())2,1((ˆ))2,1(ˆ(ˆ 2
121212   PPP  . 

 
On the other hand, taking the definition of replacement operator and applying 12P̂  from left, 
we obtain 

)2,1()1,2(ˆ))2,1(ˆ(ˆ
121212   PPP  . 

 
Comparing the results, it follows that 12  , which gives  
 

1  . 
 
Next we show that eigenfuctions of operator 12P̂  are symmetrical or antisymmetrical. Fist we 
take eigenfunction corresponding to 1  
 

)2,1()2,1(1̂2  P  . 
 
Since by definition of 12P̂ : 12P̂ ψ(1,2) = ψ(2,1), we get 
 

)1,2()2,1(    , 
 
which means that eigenfunction is symmetrical in replacement 21  . 
 
Taking similarly the eigenfunction corresponding to 1  
 

)2,1()2,1(1̂2  P   
 

and using the definition of 12P̂ , we get 
 

)1,2()2,1(    , 
 
which means that eigenfunction is antisymmetrical in replacement 21 . 
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31.3 Symmetrical and antisymmetrical wave functions. Now it is easy to demonstrate that 
wave functions for systems with identical particles are always symmetrical or antisymmetrical 
by replacements of particles. It follows from the fact that the energy operator 
 

)2(ˆ)1(ˆ)2,1(ˆ HHH   
 

is invariant on replacement 21 , therefore it commutes with the replacement operator 12P̂  
 

  0)2,1(ˆ,1̂2 HP  . 
 
For that reason both operators have common eigenfunctions. We just demonstrated that the 
eigenfunctions of replacement operator 12P̂  are symmetrical or antisymmetrical, therefore the 
eigenfunctions of Hamilton operator Ĥ (1,2) are similarly symmetrical or antisymmetrical. 
 
In conclusion. If for two indentical particles we have two separate equations 
 

)1()1()1(ˆ
1   EH   , 

 

)2()2()2(ˆ
2   EH   , 

 
then the energy operator of a given two-particle system is 
 

)2(ˆ)1(ˆ)2,1(ˆ HHH   
 

and its eigenfunctions, corresponging to the total energy 21 EEE   are symmetrical 
 

)1()2()2()1(   s  , 
or antisymmetrical 

)1()2()2()1(   a   
 
(not normed here). 
 
31.4 System of n identical particles. The result, obtained above is easily generalized to n-
identical particles case. The wave function is also symmetrical or antisymmetrical in 
replacements of arbitrary pair of particles. If we denote the n-particle wave function 
symbolically as )...,,...,,...,,2,1( nji , we define replacement operator ijP̂ , which replaces 
paticles i and j, as follows 
 

)...,,...,,...,,2,1()...,,...,,...,,2,1(ˆ nijnjiP ji   . 
 
Eigenvalues of all replacement operators are +1 and -1, and the corresponding wave functions 
are in replacements symmetrical or antisymmetrical. 
 
Operator of total energy 
 

)(ˆ...)(ˆ...)(ˆ...)2(ˆ)1(ˆ)...,,...,,...,,2,1(ˆ nHjHiHHHnjiH   
 
commutes with all replacement operators. Therefore there remains two possibilities: wave 
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function is symmetrical in all replacements, or it is antisymmterial in all replacements. All 
nonsymmetrical combinations are not allowed, since then the particles are not identical as 
assumed (assuming, for example, that our wave function is symmetrical with respect to the 
replacement 1 ↔ 3, but antisymmetrical with respect to the replacement 2 ↔ 3, then the 
particles are not totally identical and some of them distinguish from others). 
 
General symmetrical wave function is written symbolically as 
 


P

s nji
nji

)(...)(...)(...)2()1(
21   , 

 
where P denotes the sum over all permutations of indices 1, 2, ,,,, n. Antisymmetrical wave 
function is written as 
 

 
P

P
a nji

nji
)(...)(...)(...)2()1()1(

21   , 

 
where for even permutations there is plus, and for odd permutations minus sign. The latter 
may be written as determinant (called Slater determinant) 
 

)()2()1(

)()2()1(
)()2()1(

222

111

n

n
n

nnn 






















  . 

 
These functions are not normed. For normed functions we must add the normalization factor 

!/1 n  . 
 
31.5 Connection between spin and statistics. It appears that the symmetry of wave functions 
corresponding to systems of identical particles depends on spin. Particles with even integer 
spin (0, 1, 2, ...) are described by symmetrical wave functions (we denote them s ), particles 
with half-odd integer spin (1/2, 3/2, ...) are described by antisymmetrical wave functions (we 
denote a ). Since particles with integer spin are described by Bose-Einsteini statistics and 
particles with half-odd integer spin are described with Fermi-Dirac statistics, then it is 
sometimes called the connection between spin and statistics. As we know, particles with 
integer spin are called bosons and particles with half odd integer spin are called fermions. 
 
The strict proof of connection between spin and statistics is given in quantum field theory. 
Here we give it as a known fact. Here we give only a trivial example that in the case of two 
electrons its wave function must be antisymmetrical. As we know, for electrons Pauli 
formulated the exclusion principle (there are no two electrons in the same quantum state), 
therefore it is described by antisymmetrical wave function )1()2()2()1(   a . 
Indeed, if we take   , we get 0a  , which means that the probability that two electrons 
are exactly in the same state is equal to zero. For the integer spin particles there are no such 
restrictions and if we take the symmetrical wave function, then the state with 21   and 

   is allowed and )()(2 11  s  is nonzero. 
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32. Helium atom 
 
 
 
Next we consider the Helium atom and possibilities to find its energy levels and states. Since 
there are two electrons connected with nucleus and also with each other by electrical forces, 
the problem is very complicated and there are no analytical solutions for the corresponding 
Schrödinger equation. For that reason some approximation methods are needed. Next we use 
not the best one, since it gives not the best values for energies, but on the other hand it gives 
quite simple picture for the energy levels structure and explains the new type of forces 
(exchange forces) which are specitific to the microworld and have no classical analog. 
 
32.1 Hamilton operator of He-aatom. To simplify the problem we take into consideration 
only electrical forces. Eletrons energy operator is the following 
 

)2,1()2()1(
22

ˆ
2

2

1

2

UUU
MM

H 
  . 

 
Two first terms are electrons kinetic energy operators, two next 
terms - )1(U  and )2(U  - are potential energies of electrons and 
nucleus 

2

2

1

2 2)2(,2)1(
r
ebU

r
ebU   

 
and )2,1(U  is the potential energy of two electrons 
 

12

2

)2,1(
r
beU   . 

 
Before we go further, one general remark. Total energy does not depend on spin. That means 
that the total spin is a conserved quantity and characterizes the helium states. General wave 
function is written as a product of spin function and coordinate dependent wave function 
Since the energy operator is symmetrical with respect to the replacement of electrons, the total 
wave function must be antysymmetrical. 
 
The complications in solving eigenvalue problem arise mainly from to the interaction between 
electrons, since their potential energy depends on the distance 12r  between electrons, which is 
a function of distances 1r  and 2r , and also on the angle   between their segments. Therefore 
there do not exist any closed analytical solutions and approximation methods are needed. 
 
Next we use the most simple approximation, we call it the zeroth approximation, where we 
neglect the interaction between electrons. In the He-atom case that is not the best one, since 
the forces between two elctrons are not too small (in comparison with forces between 
electrons and nucleus), but it gives the simple explanation to the general structure of energy 
levels . 
 
32.2 Zeroth approximation. We begin with approximation where we take the potential 
energy )2,1(U  to be equal to zero. Then we must solve the eigenvalue problem of the 



R.-K. Loide   Kvantmehaanika 183 

following energy operator 
 

)2(
2

)1(
2

ˆ
2

2

1

2

U
M

U
M

H 
  . 

 
It is written as 

)2(ˆ)1(ˆˆ HHH   , 
 

where Ĥ  (1) and Ĥ  (2) are energy operators of hydrogen like atoms (now Z = 2). 
 
In our new problem there are two independent electrons moving around the same nucleus. 
Total energy E  is the sum of its energies 
 

21 EEE   . 
 

Solutions of equations )1()1()1(ˆ
1   EH   and )2()2()2(ˆ

2   EH   are known. Energies 
of electrons depend on two principial quantum numbers, which we denote as 1n  and 2n  
 

2
2

22
1

1
4,4
n
RE

n
RE 

  , 

 
therefore the total energy is 

2
2

2
1

44
n
R

n
RE 

  , 

where ...,2,1, 21 nn  . 
 
32.3 Electronic states. Since there are two identical electrons, the total wave function is 
antisymmetric. Next we find the general structure of wave functions. Since the energy does 
not depend on spin, electron wave function is a product of two independent functions  
 

  ),()(),,( lmnlmlnnlm YrRr   , 
 
where the wave function which depends on space coordinates is in turn the product of radial 
and spherical functions. 
 
As a shorthand, we write the wave functions of electrons, as 
 

21 )2()2(,)1()1(      . 
 
(where the )1(  and )2(  depend on coordinates). From products of such functions we must 
construct antisymmetrical wave functions. 
 
As we told, energy does not depend on spin and therefore one of the quantities that determine 
electron states is total spin. For that reason we at first analyse the spin states of these two 
electrons. Since electrons have spin 1/2 the total spin is 0 or 1. Next we write down the 
corresponding state functions (see §17). 
 
We denote the state, corresponding to spin projection 2/1  , by   and the state, 
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corresponding to spin projection 2/1  by  . If spin projections of both electrons are 
equal to 2/1 , then )1(1

2/1    and )2(2
2/1   , and analogically, if the spin projections 

are -1/2, then )1(1
2/1    and )2(2

2/1   . The normed wave function, corresponding to 
the total spin s = 0 , is written as 
 

))1()2()2()1((
2

1)0(  S , 

 
and in the case of total spin s = 1, we, depending on spin projection, have three orthonormed 
wave functions 

)2()1()1(1 S , 

))1()2()2()1((
2

1)1(0  S , 

)2()1()1(1 S . 
 
In the first case spins are antiparallel (opposite directed), in the second case they are parallel 
(had the same direction). 
 
As we see, the spin dependent functions have different symmetry in replacement 21 , if 
total spin is 0, it is antisymmetrical and if total spin is 1, it is symmetrical. The total wave 
function of two electron is antisymmetrical. Since the the total wave function is a product of 
spin function to the space dependent function, then we have two diffent types of functions. 
The states with the total spin 0, have antisymmetrical spin function, therefore the 
corresponding space part must be symmetrical, therefore the wave function is written as 
 

)0()2,1()2,1(00 Ss  , 
 
where )2,1(s  is symmetrical in space coordinates in replacement 21 . The states with the 
total spin 1 have symmetrical spin function, therefore the corresponding total wave function is 
written as 

)1()2,1()2,1(1   Sa , 
 
where )2,1(a  is antisymmetrical in replacement 21  (σ denotes spin projection of total 
spin ( 1,0,1  )). The states with the total spin 0 and 1 are correspondingly called singlet 
and triplet states. 
 
Next we shortly analyse the space part of wave functions. The space part of both electrons are 
determined by the location and three quantum numbers n, l ja m: )(rmln


  , then it is obvious 

that it is always possible to construct symmetrical wave functions, but not always 
antisymmetrical functions. If the wave functions of two electrons are  
 

)( 1rmln


    ja   )( 2rmln


  , 
 
then the simple symmetrization (indpendently on the values of corresponding quantum 
numbers) gives 
 



R.-K. Loide   Kvantmehaanika 185 

))()()()((
2

1)2,1( 1221 rrrr mlnnlmmlnnlms


    . 

 
It means that singlet states exist in the case of all possible electron states. Antisymmetrical 
wave function exists for these states only, in which electrons are in different states ( n ≠ n’, l ≠ 
l’, m ≠ m’ ) 
 

))()()()((
2

1)2,1( 1221 rrrr mlnnlmmlnnlma


   . 

 
Therefore the triplet states exist only in cases when electrons are in states with different 
quantum numbers. 
 
Next we write down some special wave functions and calculate the energy correction due the 
interactions between electrons themselves. 
 
32.4 Ground state. The ground state corresponds to minimal energy. In that case both 
electrons are in ground state ( 121  nn ). Ground state energy is 
 

 RRE 8)4(20   . 
 
Next we find the corrsponding wave function. Since for both electrons 0 ml , the space 
dependent wave functions are 
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0
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Their product is obviously symmetrical 
 

0

21 )(2

3
0

8)2,1( r
rr

s e
r







  . 

 
Therefore the ground state corresponds to the total spin s = 0, since now the spin part must be 
antisymmetrical. Thefore the ground state wave function is 
 

))1()2()2()1((
2

18)2,1( 0

21 )(2

3
0

00 


 



r

rr

e
r

 . 

 
Energy correction to the ground state. Next we use simple parturbation theory to calculate the 
energy correction due to the forces between two electrons. The perturbation operator is now 

)2,1(ˆ UH  . First order energy correction is given by the diagonal matrix element 
 

)2,1(1)2,1()2,1()2,1()2,1( 00
12

00
2

00000 
r

ebUE   . 

 
Since the function under the integral ( 12/1 r ) does not depend on spin and spin functions are 
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normed, the integral is over the space coordinates only 
 

)2,1(1)2,1(
12

2
0 ss r

ebE  , 

 
which in our case means integral 
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164 dVdVe

r
e

r
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Calculation of that integral is quite complicated, since cos2 21

2
2

2
112 rrrrr   , therefore 

we give here the final result (which one may find in textbooks) 
 

00 16
5 EE   . 

 
The ground state energy is therefore 
 

000 16
11 EEEE   . 

 
The quantity, measured in experiments, is usually the ionization energy. That is 
 

eVREEEEi 4,20
2
3

16
3

16
11

2
1

000    . 

 
If we compare it with the experimental result 24,6 eV, we see that our approximation is not 
quite good and for that reason better approximation methods are needed. Our main goal here 
was to clarify the general structure of energy levels and therefore we here limit ourselves with 
the given results. 
 
It appears that for other helium-like atoms - Li+, Be++, ..., the same method gives quite good 
results, since there the interaction between two electron is smaller and smaller than the 
interaction between electrons and nucleus. 
 
 
32.5 First exited state. To clarify the structure of He energy levels and corrections to energy 
we next consider the first exited state. In the zeroth-order the first exited state corresponds to 

11 n  ja 22 n  or 21 n  ja 12 n  (one of the electrons is in the first exited state). Its 
energy is 




 RRRE 5
2

44 21   . 

 
For simplicity we assume that both electrons are in s-state ( 0l ). Then the corresponding 
wave functions are 
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 )(
2

1)(
2

1
202101 rRandrR ss   . 

 
Since the radial functions are different, its possible to find both, symmetrical and 
antisymmetrical radial functions: 
 

))()()()((
24

1
120210220110 rRrRrRrRRs 


, 

 

))()()()((
24

1
120210220110 rRrRrRrRRa 


 . 

 
The first one corresponds to the singlet state (s = 0), since it must be combined with 
antisymmetrical spin function, and the second one to the triplet state (s = 1), since it is 
combined with the symmetrical spin function. 
 
Next we consider the energy corrections to the 1E . The general expression of it is 
 

 )2,1(UE   , 
 
We treat symmetrical and antisymmetrical cases simultaneously. Since )2,1(U  does not 
depend on spin (transitions are allowed between the states with the same spin), we must 
calculate integrals 
 

  211210220110
12

2

1202102201102 ))()()()(())()()()((
32

1 dVdVrRrRrRrR
r
berRrRrRrRE


 

We do not calculate them directly, but give only the general analysis of results. Simple 
arithmetics gives the following general form 
 

AQE   , 
 
where the plus sign is in the case of symmetrical and the minus sign in the case of 
antisymmetrical radial functions. Quantities Q and A are integrals 
 

 212
2
20

12

2

1
2
102 )()(

16
1 dVdVrR

r
berRQ


 , 

 

 21220120
12

2

2101102 )()()()(
16

1 dVdVrRrR
r
berRrRA


 . 

 
The first term Q  has simple physical meaning, it is the total potential energy of two electrons. 
The charge of the 1s electron in the volume element 1dV  is 11

2
101 )( dVrRedq   , and similarly 

the charge of the 2s electron in volume element 2dV  is 22
2
202 )( dVrRedq   . If the distance 

between them is 12r  their potential energy is expressed as 
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12

21

r
dqbdq  . 

 
The second term - A  - has a direct quantum mechanical origin and has no classical analog. 
The corresponding energy correction is called the exchange energy and follows from the 
demand that the wave function must be antisymmetrical in replacement of electrons. It has no 
classical analog since the radial part of 1s electron must be taken at the same time with the 
argument 1r  and also with 2r , similarly the radial part of 2s , which seems that due to the 
“exchange” of particles they are at the same time on both places. But that “exchange” gives us 
some additional energy – exchange energy – which in classical meaning is connected with 
some extra force, and therefore the corresponding forces are called exchange forces. The 
physical origin of exchange energy is due to the fact that microparticles are identical and 
therefore it is not possible to distinguish states, in which the particles are replaced. 
 
Direct calculation gives that both integrals are positive and so the corresponding energies. 
Therefore the energy corrections are: in the case of symmetrical sR  
 

AQEs   
 

and in the case of antisymmetrical aR  
 

AQEa   . 
 
Distance between levels is A2  and is therefore determined by the exchane forces. Th results 
are valied also for the other states, therefore the singlet states energy (antiparallel spins) is 
higher than the corresponding energy of triplet states (parallel spins).  
 
 
 
The energy level structure 
of He-atom and possible 
optical transitions are 
presented on figure (on 
right). Depending on the 
total spin of electrons there 
a two  kind of helium – 
parahelium (s = 0) and 
orthohelium (s = 1). 
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33. Hydrogen molecule 
 
 
Here we treat the simplest molecule, hydrogen molecule 2H , and try to explain the conditions 
for binding of two hydrogen atoms. Mathematically the problem is very complicated (two 
nucleus and two electrons) and there are no analytical solutions. We mostly analyse the 
qualitative side of problem and do not perform direct calculations. 
 
33.1 Hamiltonian operator. Next we restrict ourselves to the electrical forces only. Using the 
adiabatical approximation (see Appendix) the Hamiltonian operator for electrons in fixed 
distance R between two nucleus is 
 

R
be
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be

r
be
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be

r
be
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be
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bbaa
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2

1

2

22
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  , 

 
 
where nuclei are denoted by a and b, electrons are 
denoted by 1 and 2, R is distance between two 
nucleus and r (with different indices) denote 
different distances of electrons 
 
 
 
Since there are no analytical solutions, approximation methods must be used. At first we treat 
it as the system of two independent hydrogen atoms. As in the helium atom case we have two 
electrons and the total spin has two values s = 0 and s = 1, therefore the space coordinates 
dependent part of wave function must be correspondingly symmetrical or antisymmetrical. 
Therefore the function, depending on space coordinates, we started with, is written as  
 

))1()2()2()1(( baba   , 
where 

),,()1( 111  anlm ra   ,           ),,()2( 222  anlm ra   , 
 

),,()1( 111    bmln rb  ,           ),,()2( 222    bmln rb   
 
and α is normalization factor. We assumed, that electron 1 may “move” around the first or the 
second hydrogen nucleus, and similarly elctron 2. 
 
Next we find the normalization factor α. Here we must take into account that the wave 
functions of atoms a and b are not mutually orthogonal. 
 

21
2

21

2
))1()2()2()1((*))1()2()2()1((1 dVdVbabababadVdV     

 
Rewriting the right hand side, we get 
 

   1)1(2))2(*)2()1()1(*)2()1((2 22
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where  1)1()1(* dVba . If we choose the normalization factor to be real, we have 

)1(2

1
2




  . 

 
We next consider he ground state only ( 0,0,1  mlnn ), the radial wave functions are 
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These satisfy 
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  , 

 
(analogically also a(2) and b(1), where one must replace indices 1 and 2). RE 1  is the 
ground state energy of hydrogen atom. In a given approximation the ground state energy of 
whole system is 

REE 22 10   
 
Next we analyse the energy corrections and find the possibilities to form the hydrogen 
molecule. We in principle must use modified perturbation theory (since a(1) ja b(1) are not 
orthogonal) 

  0)1()1( 1dVba , 
 
but since β is small we may restrict ourselves to the ordinary perturbation theory. We rewrite 
the energy operator as 

HHH  ˆ)2,1(ˆˆ
0  , 

where 
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is the sum of two independent energy operators of hydrogen atoms and take 
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as perturbation. From here we separate the potential energy of two nucleus (we treat the 
distance R between them as an independent parameter), and write 
 

H
R

beH  ˆˆ
2

 , 

where we treat 
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as a “real” perturbation. 
 
The total energy of the ground system is expressed as 
 

E
R
ebEE 

2

0  , 

 
where ΔE is a diagonal matrix element of perturbation operator H ˆ . The general form of it is 
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We rewrite it as 

)(
1

1
2 AQE 





 , 

where 

  21
22 ˆ)2()1( dVdVHbaQ       and        21

ˆ)2()1()2()1( dVdVHbbaaA . 
 
The first term Q is the Coulomb potential energy (potential energy of electrons themselves 
and potential energies between electron and other nucleus). The second term A is similarly 
treated as an exchange energy which is due to the replacement of electrons and has no 
classical analog. Both terms of course depend on the distance R between the two nucleus. 
Direct calculations demonstrate, and that is the most important result here, that A is always 
negative (in the He-atom case it was positive). 
 
As we already mentioned Q and A depend on R. 
For that reason the total energy E = E(R) of the 
ground state depends also from the distance R 
between the two nucleus. The result of direct 
calculations of total energy of ground state is 
presented on figure and shows that when the total 
spin s = 1 (the radial wave function is 
antisymmetrical), no mocelule forms (in all 
distances the forces between hydrogen atoms are 
repulsive, but in the total spin s = 0 case (radial 
function is symmetrical) appears the binding 
between two hydrogen atoms and they form the 
hydrogen molecule. 
 
In chemistry it is called the covalent binding. 
Physically it is explained in the following way: if spins are antiparallel, the radial wave 
function is symmetrical and that means that the probability to find electrons between two 
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nucleus is not small and therefore the electrons “moving” between two nucleus compensate 
the repulsive forces acting between the two nucleus themselves. Moreover in that case 
electrons are common and do not “move” around one atom only, but around both atoms. 
 
 
Appendix. 
 
Adiabatical approximation. In the case of molecules and especially in the solid state case we 
have the particle systems which consists of electrons and nuclei. Therefore it is impossible 
directly solve corresponding equations and we must use some approximations. Since the mass 
of nucleus is usually more than 2000 times greater, it is logical to assume that nuclei move 
slowly comparing with electrons. It allows us to assume that in the zeroth approximation 
nuclei do not move and calculate electron states for fixed positions of nuclei and in the next 
approximations use the motion of nuclei as some perturbation. The above given method is 
called adiabatical approximation. 
 
Assume that we have the system of identical electrons and identical nuclei. Their Hamiltonian 
operator is written symbolically as 
 

),(ˆ RrUTTH rR   , 
 
where R is a shorthand of all coordinates of nuclei, r is a shorthand of all electron coordinates. 

RT  and rT  are the corresponding kinetic energy operators 
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and U(r,R) is the total potential energy of whole system. 
 
Assuming that nuclei move slowly, we treat its motion as a small perturbation and write 
energy operator as 

RTHH  0
ˆˆ  , 

 
where ),(ˆ

0 RrUTH r   and for zeroth-oder approximation take the equation 
 

),()(),(ˆ
0 RrRRrH nnn    . 

 
In the last equation coordinates of nuclei R are fixed (we treat them as parameters)  
 
Suppose the last equation is solved. Then the solution of the problem, we are interested in 
 

),(),(ˆ RrERrH    
 

is given in the following form 


n
nn RrRRr ),()(),(   . 
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If we put the solution back to our equation, multiplying from left to ),(* Rrk  and integrating 
over the coordinates of electrons, we get the following equation 
 

)(ˆ)()( RCRET kknR    , 
where 
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The equation, we just derived, is equivalent to the equation we started with. Adiabatical 
approximation means that the term on the right side )(ˆ RC k  is small and we therefore take it 
equal to zero. 
 
In conclusion, using the adiabatical approximation, we replace our equation we started with 
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or, as written more precisely 
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with the following two equations 
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(The general solution is in form 

n
nn RrRRr ),()(),(  .) The first equation gives states 

of electrons when the positions of nuclei iR  are fixed and corresponding energies of 
electrons. The second equation describes nuclei, where the role of potential energy is energy 
of electrons ),( Rrn . 
 


