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26. Time dependence of physical quantities, conservation 
laws 

 
 
Next we analyse of how physical quantity A changes in time and derive the conditions, when 
that quantity is conserved. We start with the mean value of A in some possible state ),( tr   
and investigate its time dependence. The mean value of A is calculated as 
 

 AdVtrAtrA ˆ),(ˆ),(* 


 . 
 
Time derivative of it is 
 

dV
t

AdVA
t
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t
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*  

 
(since r  is variable of integration, all derivatives under the integral become partial derivatives). 
 
Since the wave function ),( tr   is the solution of Schrödinger equation 
 

*)ˆ(*,ˆ  H
t

iH
t
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  , 
 
we replace the partial derivatives from wave function and get 
 

  



 dVHA
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i
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 . 

 
Since the Hamilton operator is hermitean, we remove it in the second term to right, and write the 
result as 

  



 dVHA
i

dV
t
AA
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d

 ˆ,ˆ*1ˆ
*


 . 

 
The last expression we write as operator identity 
 

 HA
it

A
dt
Ad ˆ,ˆ1ˆˆ







  . 

 
26.1 Conservation of physical quantity. Next we find conditions when the value of physical 
quantity is conserved. If A does not change in time then  
 

0 A
dt
d  , 

 
which for operators means 
 

 HA
it

A
dt
Ad ˆ,ˆ1ˆ

0
ˆ







  . 
 

When operator does not directly depend on time (i.e. is time independent: 0/ˆ  tA ), then A is 
conserved, if 

  0ˆ,ˆ HA  . 
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Therefore, each physical quantity which does not explicitly depend on time, is conserved, if its 
operator Â  commutes with the energy operator Ĥ . 
 
Some simple examples. 
 
Example 1. Conservation of energy. Now HA ˆˆ  . From here we conclude, that energy is 
conserved when Hamilton operator does not explicitly depend on time 
 

0
ˆ





t
H  . 

 
Example 2. Conservation of momentum. Momentum operator  

 ip̂  does not depend on 
time. Momentum is conserved in each system, energy operator of which commutes with 
momentum operator 

  0ˆ,ˆ Hp  . 
 
The simplest example is free particle. In free particle case 
 


M

p
M

H
2

ˆ
2
1ˆ

2
2   . 

 

Example 3. Conservation of angular momentum. Angular momentum operator is prL ˆˆ 
 . 

Angular momentum is conserved when 
 

0ˆ,ˆ 



 HL


 . 
 
Example – particle in central force field. 
 
Nex we demonstrate that the well known conservation laws (energy, momentum and angular 
momentum) follow from the symmetries of space and time. 
 
26.2 Homogenity of time and energy conservation. As we know the general conservation 
laws for energy, momentum and angular momentum are valied in macro and microworld, where 
they are derived from the corresponding fundamental equations. Therefore it is possible to 
assume that these laws are more general and follow from more general assumtions, rather from 
physical equations valied in different theories.  
 
Next we demonstrate that from the homogenity of time follows the energy conservation law. 
Time is homogeneous, since all time moments are equivalent. That concludes from our everyday 
experience – the results of experiments do not depend when we perform our experiment, 
important is that all physical conditions in experiments remain the same. 
 
We consider the wave functions at some time moment t  and at next moment tt  , where t  
is infinitesimal time interval (theoretically infinitely small) and find the time shift operator 

)(ˆ tT   
)()(ˆ)( ttTtt    . 

 
Since t  is infinitely small, we may write 
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)()1()()( t
t

tt
t

ttt 







  

 
(here is partial derivative, since ),( tr  ). Therefore the time shift operator is 
 

t
ttT



  1)(ˆ  . 

 
If we assume that time is homogeneous, then that means that in energy measurements the result 
does not depend in which order we act: whether we perform the shift of time and them measure 
energy, of vice versa, measure energy and then perform the shift of time. Mathematically it 
means that operators )(ˆ tT   and Ĥ  commute 
 

  )(ˆˆˆ)(ˆ0ˆ,)(ˆ tTHHtTHtT    . 
 
From the last expression we conclude the conditions when energy is conserved. We write it as 
 

)1(ˆˆ)1(
t

tHH
t

t







   . 

 
The latter equality holds, if 

0
ˆ





t
H  , 

 
which is the sufficient condition for the energy conservation. 
 
26.3 Homogenity of space and momentum conservation. From the homogenity of space 
follows consevation of momentum. Space is homogeneous, since all points in space are 
equivalent. In our everyday experience it is obvious that the result of experiment does not 
depend on place if all the other physical conditions are the same. 
 
Consider the wave functions in two different points r  and rr 

 , where ),,( zyxr  
  

is infinitesimal space shift. Next we find the corresponding time shift operator )(ˆ rT 
  

 

)()(ˆ)( rrTrr 
   . 

 
Using the series expansion of )( rr 

   , we may write 
 

)()1()()( rrz
z

y
y

x
x
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  . 

 

We write it via the momentum operator  
 ip̂  

 

)()ˆ1()( rprirr 




   . 

 
The space shift operator herefore is 

prirT ˆ1)(ˆ 




   . 
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If we assume that space is homogeneous the space shift operator and Hamilton operator 
commute (result does not depend on place) 
 

)(ˆˆˆ)(ˆ rTHHrT 
   . 

 
From here it follows that 
 

  0ˆ,ˆ Hp  , 
 
which is the momentum conservation law. 
 
26.4 Isotrophy of space and conservation of angular momentum. From the isotrophy of 
space, which in other words means that all directions in space are equivalent follows the 
conservation law of angular momentum. 
 
Isotrophy of space means the invariance under the rotations of space. For simplicity we consider 
the rotations around the z-axis only. On rotation by angle  , the coordinates of any point 
transform as follows 

 sincos yxx   , 
 

 cossin yxy   , 
 

zz   . 
 
Since z does not change, we consider the transformations of x and y only. In rotations by the 
infinitesimal angle   we have 
 

yxx   ,    xyy   . 
 

Next we find the space rotation operator )(ˆ T  from 
 

),,()(ˆ),,( zyxTzxyyx    . 
 

Using the series expansion of ),,( zxyyx   , we get 
 









 )()(),,(),,(  x
y

y
x

zyxzxyyx  

 

),,()(),,( zyx
x

y
y

xzyx 







  . 

 
Since operator of z-component of angular momentum is 
 

)(ˆ
x

y
y

xiLz 






   , 

we may write 

),,()ˆ1(),,( zyxLizxyyx z 





  . 
 

From here the space rotation operator )(ˆ T  is 
 

zLiT ˆ1)(ˆ



   . 

 



Rein-Karl Loide   Kvantmehaanika 145 

If we assume the isothrophy of space (in rotations around the z-axis), then 
 

)(ˆˆˆ)(ˆ  THHT   . 
 
From here follows the conservation of zL  
 

  0ˆ,ˆ HLz  . 
 
If we analyse similar rotations around the x- and y-axis, we get the conservations of xL  and yL  
 

    0ˆ,ˆˆ,ˆ  HLHL yx  . 
 

Of course, from these three  it follows 0ˆ,ˆ2 



 HL


.  

 
26.5 Parity and parity conservation. In addition to the “classical” conservation laws, we 
treated above, in microworld there are conservation laws connected with discrete 
transformations, such as space reflection rr 

 , time rflection tt   and charge 
conjugation qq  , which are called as P, T and C transformations. 
 
As an example we analyse here only space reflection symmetry, which introduces the new 
conservative quantity, called parity. We define the following space reflection operator P̂ , which 
in transformations 

),,(),,( zyxrzyxr 
  

gives 
)()(ˆ rrP 

  , 
 
therefore for each function )(r  makes the coordinates of each point opposite. 
 
Let us solve the eigenvalue problem 

)()(ˆ rrP 
   , 

 
where eigenvalues   are called parity. Next we demonstrate, that 1 . 
 
First we take the eigenvalue problem and apply once more operator P̂  from left. Then using the 
same eigenvalue problem, we get 
 

)()(ˆ))(ˆ(ˆ)(ˆ 22 rrPrPPrP 
   . 

 

Next we perform similar calculations using the definition of parity operator P̂  
 

)()(ˆ))(ˆ(ˆ)(ˆ 2 rrPrPPrP 
   . 

 

Comparing these two results, we conclude tha 12  , and therefore 1 . 
 
The states with 1  are called positive parity states. These states satisfy 
 

)()( rr 
  . 

 
States with 1  are called negative parity states. These satisfy 
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)()( rr 
   . 

 
When parity operator commutes with the hamiltonian operator 
 

  0ˆ,ˆ HP , 
 
parity is conserved, which means that all states have definite parity. If the hamiltonian describes 
also spectral transitions then there are allowed only transitions between the same parity. 
 
Example 4. Electron in central symmetric field. In central symmetric field 
 

)(
2

ˆ
2

rU
M

H 
  . 

 

Since in reflections rr 
  Laplace operator 222222 /// zyx   and potential 

energy )(rU  do not change, parity is conserved quantity. We usually use spherical coordinates 
),,( r  and there Hamiltonian operator is written as 

 

)(ˆ
2

1
2

ˆ 2
2

2

rUL
MrM

H r 
   

and it has solutions in form 
),()(),,(  lmnlnlm YrRr   . 

 

Since   0ˆ,ˆ HP , then it also follows that 
 

0ˆ,ˆ 2 



 LP


 , 

 

moreover, it is possible to demonstrate that       0ˆ,ˆˆ,ˆˆ,ˆ  zyx LPLPLP  . 
 
The above given means that solutions 
 

),()(),,(  lmnlnlm YrRr  , 
 

corresponding to energy nlE , must have certain fixed parity. On space reflections the spherical 
coordinates change, as follows 
 

),,(),,(   rr  , 
 
therefore all reduces to the parity of spherical functions. 
 
Spherical functions are usually defined to satisfy 
 

),()1(),(  lm
l

lm YY   , 
 
which gives that these have parities 

l)1(  . 
 
In our course we do not analyse discrete symmetries more thoroughly, but in particle physics 
they are very important. Parity is connected with the left-right symmetry. When there is total 
parity concervation the world is symmteric and it is not important whether we use the right hand 
coordinate system, or the left hand coordinate system (some physics quantities change their 
directions, but physical laws do not change). Up to 1956 physicists believed that parity 
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conservation is universal, but unfortunately it is not so, in weak processes (as β-decay, as an 
example) parity is not conserved. In other processes it is conserved. For that reason the parity 
conservation, which is alo calles as P-invariance, is not universal. After the violation of parity 
conservation, it was found, that if we add to space reflections charge conjugation, i.e. change the 
electrical charges of all particles to opposite (change particles to its antiparticles), the physics 
remains the same. That was called the CP-invariance. In 1964 it appears that there exist some 
particles (neutral K-mesons), which violate the CP-invariance. There is also the third important 
discrete symmetry, symmetry under the time reflection tt  , which is called T-invariance. 
Some processes are T-invariant, which means that if it is possible to proceed opposite in time, 
the processes remain the same. But T-invariance is also not universal. In modern physics it is 
proved that the universal invariance is the CPT-invariance, which means that if we go from the 
right hand world to the left hand one, change particles to corresponding antiparticles and also 
turn the time arrow to opposite, all physical laws remain the same. 
 
Appendix. 
 
In quantum mechanics the relations between operators are the same that the similar relations 
between the same quantities in classical physics. 
 
First example: relation between the velocity and momentum Mprv /)( 

  in quantum 
mechanics turns to the same relation between the corresponding operators (prove it) 
 

M
pr
̂

   . 

 
 
Second example: the fundamental law of classical meshanics is the Newton second law 
 

gradUF
dt
pd




 . 
 
Prove that the same relation in quantum mechanics is  

gradU
dt
pd


̂

 . 
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27. Klein-Gordon equation 
 
 
Next we consider the first relativistic generalization of Schrödinger equation.  
 
27.1 Formal derivation of Schrödinger equation. Here we give the „derivation“ of 
Schrödingeri equation for free particle. The total energy (now it is kinetic energy) is 
 

M
pMvE

22

22

  . 
 
If we replace the physical quantities by corresponding operators 
 





 


 ip
t

iE ,  
 
and apply the result to function  , we get Schrödinger equation 
 








Mt
i

2

2
  . 

 
(If we add potential energy, then it is general Schrödinger equation we started our course.)  
 
27.2 Klein-Gordon equation. Here we „derive“ analogically new equation, but start from the 
relativistic relation between energy and momenyum 42

0
22 cmcpE  . Since here appears 

square root, which for operators is not defined, we take the square of energy  
 

42
0

222 cmcpE   . 
 
Making analogical replacements we get the following equation 
 


 42

0
22

2

2
2 cmc

t





   . 

We rewrite it as 

01
2

22
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2

2

2 








cm
tc

 . 

 
The given equation is called Klein-Gordon equation. It differs from the classial wave equation 
 

01
2

2

2 





tc

 

 
by the mass term added and therefore describes some massive particle. 
 
Since it is a free particle equation, we try find the solutions in form of de’Broglie waves 
 

)(
0),(

rpEti

etr


 
  . 

 
If we calculate derivatives 
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2

2

2

2

2

2

,


pE
t



  , 

 
we after repalcement get the following relation 
 

0)( 02

22
0

2

2

22

2

 


cmp
c

E  , 

 
which is valied if 42

0
222 cmcpE  . Therefore the Klein-Gordon equation is indeed relativistic 

generalization of Schrödinger equation, since it gives the right relativistic expression for energy 
and momentum. 
 
27.3 Continuity equation. Next we derive the continuity equation 
 

0

 jdiv

t
  

 
and demonstrate that   is not a probability density, as it is in quantum mechanics we treated 
before. 
 
Equation for the complex conjugated wave function is 
 

0***1
2
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2

2 








cm
tc

 . 

 
We multiply the ordinary equation from left to *  and the complex conjugated equation from 
right to  . After subtracting the results, we have 
 

0*)()(*)**(1
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2

2

2
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ttc

. 

 
The result is also written as 
 

0))(**)(()**(1
2 









 

tttc
 , 

 
whic is the continuity equation, where 
 


tt 








**  , 

and 
))(**)((2   cj


 . 

 
From the above expressions it is obvious that we cannot interprete   as the probability density, 
since it is not positively determined (there exists no negative probability!). 
 
Since ρ is not always positive, is a serious problem from quantum mechanical point of view and 
it was the main reason why the Klein-Gordon equation was not taken seriously after it was 
derived. Moreover, it has in addition to positive energy solutions 42

0
22 cmcpE   always 
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negative energy solutions 42
0

22 cmcpE  , which is also problematical in quantum 
mechanics. 
 
It should be mentioned, that there are indeed problems if we try to use Klein-Gordon equation in 
ordinary quantum mechanics, but it is normal relativistic equation and is used in quantum field 
theory (relativistic particle physics) and it describes spinnless (s = 0) massive particles. 
 
27.4 Nonrelativistic limit. As it is known, classical relativity theory (special relativity) goes in 
small velocities limit over to Newtonian mechanics. That is called nonrelativistic limit. Similarly 
Klein-Gordon equation has nonrelativistic limit and it is Schrödinger equation. Next we shall 
demonstrate it for the Klein-Gordon particle in an external electromagnetic field. After the 
substitution 

Aeipe
t

iE





 



 ,   

 
and using 42

0
222 cmcpE   we get the equation 

 

 42
0

222 )()( cmAeihce
t

i 

 

  . 

 
In nonrelativistic case the rest energy of a particle 2

00 cmE   is of some orders of magnitude 
greater that its nonrelativistic energy E  , we separate it from our equation using the following 
transformation 

tcmi

etrtr
2

0
),(),( 

 
  . 

 
Also we in next calsutaions use the fact that the rest energy 2

00 cmE   is large and all other 

energies are small, and for that reason also .2
0cme   It means that all terms which do not 

contain the rest energy, are omitted. 
 
We start from the left side of our equation 
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where in the last expression all terms without 2

0cm  were omitted. 
 
Similarly the right side of our eqution gives 
 

))(( 42
0

22
2

0
 


cmAeice

tcmi 
  . 

 
As a final result, after cancelling exponent and dividing by 2

02 cm , we get 
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  , 

 
which after some simple transformations gives us Schrödinger equation 
 

 

 eAei

mt
i 2

0

)(
2

1 
  . 

 
 
 

28. Dirac equation 
 
 
 
In the previous paragraph we noted that the relativistic Klein-Gordoni equation was not 
satisfactory, since there are no quantity which should be treated as probability density. The main 
reason for it is, that there is the second order derivative of time. That was the main reason why 
Dirac starts to look for some new relativistic equation which has a normal probability 
interpretation. At first he decided that it must be a first order equation (in relativistic equation all 
derivatives must be of the same order due to the relation between energy and momentum). If we 
try to start from the classical relation 42

0
22 cmcpE  , as before, then it gives nothing 

normal, since we are not able to go directly to operators, since roots of operators are not defined 
mathematically. 
 
28.1 General form of Dirac equation. We try to find our new equation in form 
 



 )ˆˆˆ( 0  cmpppc
t

i zzyyxz  , 

 
where zyx  ,,  and   are some new operators which commute with the momentum operator 
(for simplicity we omit the operator mark, since as we soon see, these are some matrices). 
 
We write it in standard form 



 H
t

i ˆ  , 

where the haniltonian operator is 
 

)ˆˆˆ(ˆ
0  cmpppcH zzyyxz   . 

 
Next we calcuate the square of Ĥ  . If Ĥ  is indeed energy operator, the we must get the 
operator form of 42

0
222 cmcpE   , that is 42

0
222 ˆˆ cmcpH 

 , or 
 

42
0

22222 )ˆˆˆ(ˆ cmpppcH zyx   . 
 
In calculating the square of Ĥ , we take into consideration that zyx  ,,  and   are operators 
and for that reason its order in products is important. The result is 
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 242
0

22222222 )ˆˆˆ(ˆ  cmpppcH zzyyxx  
 

 xzzxxzzyyzzyyxxyyx ppppppc ˆˆ)(ˆˆ)(ˆˆ)((2   
 

))(ˆ)(ˆ)(ˆ 000 zzzyyyxxx pcmpcmpcm    . 
 
Comapring it with the previous expression of 2Ĥ , we get the following relations for zyx  ,,  
and   

Izyx  2222   , 
 

0,0,0  zxxzyzzyxyyx   , 
 

0,0,0  zzyyxx    
 

must be valid. First we see that operators zyx  ,,  and   are not numbers, since numbers 
commute, but our quantities do not commute, they anticommute, for example xyyx   . 
For that reason we try to search them in matrix form, and for that reason, must assume that the 
wave function   is also some n-component matrix. We therefore must find 4 anticommuting 
matrices whch squares are equal to unit matrix. 
 
First we see that these matrices have an even number of rows and columns. As an example, we 
take the following relation 

xxx I   
 
(in the last equality we added unit matrix). We take dterminants from both sides and use the fact 
that determinant from the product of matrices is the product of its determinants 
 

xx I  detdet)det(detdet   . 
From here it follows that 

1)1()det(  nI  , 
and therefore the possible values of n are n = 2, 4, 6, ... . 
 
It is easy to verify that there are no four  2x2 matrices. There are four independent 2x2 matrices 

zyxI  ,,, , but only three anticommuting ones (Pauli matrices). 
 
The next possibility is to use 4x4 matrices. It appears that we indeed find 4 matrices which 
satisfy all above given relations. There exist of course different sets of matrices to use, but here 
we give one of them which is mostly used. These are expressed via the Pauli matrices and have 
the following form 
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x
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0
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  . 

 
As we see that it is the representation via 2x2 matrices and is mostly used form of them, but in 
reality they are the following 4x4 matrices 
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1000
0100
0010
0001

,

0010
0001
1000

0100

,

000
000
000

000

,

0001
0010
0100
1000

 zyx

i
i

i
i

 . 

 
By direct calculation it is easy to verify that all the above given relation are satisfied (the square 
of matrices equals to 4x4 unit matrix). 
 
Since operators zyx  ,,  and   are 4x4 matrices, our wave function   has four components 
 





















4

3

2

1






 . 

 
Since we mostly use the so-called two component representation (using 2x2 Pauli matrices), we 
present also   in “two component” form, as 
 














 , 

where  











2

1




  

and 











4

3




  . 

 
They are frequently called upper and lower components. 
 
Similarly, as Pauli matrices, we treat matrices zyx  ,,  as matrix vector ),,( zyx  


 

components and it allows to write the Dirac equation in more compact form 
 



 )ˆ( 0  cmpc
t

i 
  . 

 
First we derive the continuity equation and show that now we got the nonnegative quantity   
which is interpreted as the probability density. We start from the Dirac equation in the following 
form 



 )( 0  cmic
t

i 
  . 

 

Since it is a matrix equation we derive the equation for the conjugated wave function   
(which is four component one row matrix). The result is 
 

))(( 0








  cmic
t

i 
  . 

 

Since 


  and    , then 
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))(( 0  






 cmic
t

i 
  . 

 

Next we multiply the first equation from the left to   and the latter one from the right to   
and subtract the second one from the first one, we get the following result 
 

))()(( 







 


 
c

tt
 , 

 
which we rewrite as 
 

0)()( 

  

c
t

 . 

We therefore got the continuity equation 
 

0

 jdiv

t
  , 

where 
  


cj,  . 

 
From it it is easy to verify that the quantity 
 

44332211 ****     
 
is nonnegative and therefore may be treated as probability density. 
 
28.2 Solutions of Dirac equation. Next we analyse the solutions of Diraci equation. Since it is a 
free particle equation, we try to find solutions in the form of de’Broglie waves 
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  , 
 

where 0  is some four component constant 
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 . 

Calculating derivatives 
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and substituting to the Dirac equation, we get equation for 0  
 

000 )(   cmpcE   . 
 
Its two-component form is (we omit the index 0)  
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and gives us two equations 
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 2
0)( cmpcE 

  , 
 

 2
0)( cmpcE 

  . 
We also write them as 

 )()( 2
0


 pccmE  , 

 

 )()( 2
0


 pccmE  . 

 
Next we find the conditions which give us nontrivial solutions for   and  . If we write these 
equations as one matrix equation 
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2
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cmEpc
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 , 

 
it is easy to see, that nontrivial solutions exists if the determinant of a given system equals to 
zero  
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2
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pccmE








 . 

 
Since it is 4x4 determinant 
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 . 

 
our calculations give the following result 
 

0)()))((( 242
0

2222222
0

2
0  cmpcEpccmEcmE  . 

 
Now it is obvious that we have nontrivial solutions if energy and momentum are related by the 
above given relativistic relation (and we have particle with the rest mass 0m . 
 
Of course there are two types of solutions: solutions with positive energy and solutions with the 
negative energy: 

42
0

22 cmcpE     ,     42
0

22 cmcpE   . 
 
In the Klein-Gordon equation case there were similarly positive and negative energy solutions. 
That is the common property of all relativistic wave equations (about the physical meaning of 
negative energy solutions we talk later). 
 
Next we analyse solutions more closely. From the equations 
 

 )()( 2
0


 pccmE  , 

 

 )()( 2
0


 pccmE  , 

 
we see, that there is possible to express the lower components via the upper ones, and vice versa. 
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Before doing it, we use the simplest way and at first take the rest system (coordinate system 
where particle is at rest), therefore we take 0p . In that case 
 

0)( 2
0  cmE  , 

 

0)( 2
0  cmE  . 

 

In the positive energy case ( 2
0cmE  ) we have: 0  and 0 , therefore our particle is 

described with the help of two upper components 
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 . 

 

In the negative energy case ( 2
0cmE  ) we have: 0  and 0 , therefore our particle is 

described with the help of two lower components 
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0
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 . 

 
In other reference frames the solutions have more complicated form, since 0p , and all four 
components are usually nonzero. The solutions are usually written in form where one pair of 
components is expressed via anotger pair of components. In the positive energy case 

02
0  cmE , and therefore we may express χ as 

 

 2
0cmE

pc






 

 
and write the corresponding general solution as 
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We see that the solution is determined by two upper components. 
 
In the negative energy case 02

0  cmE  we may express analogically φ and express the 
corresponding general solution as 























2
00 cmE
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 . 
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28.3 Spin of Dirac particle. Next we prove that Dirac equation describes particles with spin 
1/2. Therefore it is the equation which must be used, as an example, for electrons. The easiest 
way to prove it is using the rest system of a particle: 0p . The Hamilton operator is 
 

2
0

ˆ cmH   . 
 
It is easy to verify that it commutes with the spin operator 
 



















0
0

2
s  . 

 
(These are spin 1/2 matrices correspondingly for upper and lowe components.) 
 

Since 










I

I
0

0
  is diagonal, then it is obvious that 

 

  0,ˆ 


H  . 
 
It means that Dirac equation has solutions with certain spin (1/2) and spin-projection. 
 
Simple calculation gives that 

I
4

3 2
2 
  , 

 
therefore all components correspond to spin 1/2 . Spin projection operator is  
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From here: spin projection 2/1  corresponds to solutions 
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spin projection 2/1  corresponds to solutions 
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 . 

 
In mathematics two component quatities, which described spin 1/2 are called spinors, the four 
component quantities corresponding to the solutions of Dirac equation are called bispinors. 
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We do not give here the general proof that Dirac equation describes spin 1/2. In order to prove it 
one must use the general free particle equation 
 



 H
t

i ˆ  , 

where 
)ˆ(ˆ

0  cmpcH 


.  
 
Now it is possible to demonstrate that the conserved quantity is the total momentum  
 

sLJ 
  . 

 
(Prove it!) 
 
Which concerns the negative energy solutions, one may ask what is the physical meaning of 
such solutions. In 1928 when Dirac write down his famous equation only electron and proton 
were the two known elementary particles and at first Dirac proposed that the negative energy 
solution describes proton (if positine energy solution is used for electron) since negative energy 
solutions for charged particles always describe the opposite charge described by the positive 
energy solutions. Since both solutions must describe particles with the same rest mass that was 
not true, because the masses of electrons and protons are different. For that reason Dirac 
assumed that negative energy particles must describe antiparticles (particles with the same rest 
mass but different electrical charge and magnetic moments orientations. Therefore in addition to 
electron there must exist particle with the same mass, but with positive elementary charge. That 
particle was called positron. It was experimentally discovered in cosmic radiation in 1932. Now 
we know that all microparticles have its antiparticle, there are also some neutral particles 
(photon, neutral π-meson, ...) but these particles are identical with its antiparticle.  
 
 

29. Approximations of Dirac equation 
 
 
In previous paragraph we demostrated that the Dirac equation is a relativistic wave equation for 
particles with spin 1/2 . Therefore it must be used for electrons, moreover it also gives the right 
connection between spin and magnetic moment of electron. However Dirac equation is quite 
complicated and for that reason it is mainly used in quantum field theory (theory of elementary 
particles). But also in quantum mechanics (which is nonrelativistic theory) it describes some 
important physical effects. Next we analyse two different approximations: the first one is 
nonrelativistic approximation and gives us the well known Pauli equation, the second one is the 
first relativistic approximation, it explains the fine structure of hydrogen atom’s energy levels. 
 
29.1 Pauli equation. First we demonstrate that the nonrelatvistic approximation of Dirac 
equation is the two component Pauli equation. 
 
We start with free particle equation, which for spinors   ja   is written as 
 

 )()( 2
0


 pccmE  , 

 

 )()( 2
0


 pccmE  . 
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Since in quantum  mechanics we operate only with positive energy solutions, we express   via 
   

 2
0cmE

pc






 . 

 
Now it is possible to verify, that in nonrelativistic limit the latter components are so small that 
we may neglect them. Indeed, the nonrelativistic energy E   is much smaller that the rest energy 
of our particle, therefore 

2
0

2
0 , cmEwhereEcmE   , 

and 

 






 2

0
2

0 22 cm
pc

Ecm
pc 

 . 

 
Next we introduce the external electromagnetic field and treat the electron in external field. We 
use the standard minimal substitution 
 

Aeppe
t

i
t

i


 





 ˆˆ,   

 
and get the following Dirac equation 
 



  cmAepce
t

i 0)ˆ(


  . 
 
Suppose that external field does not depend on time, we search the solutions in the following 
form 

)(),( 0 retr
Eti

  


 . 
 

It gives for the )(0 r  components    and    the following equations 
 

 )ˆ()( 2
0 AepccmeE


  , 

 

 )ˆ()( 2
0 AepccmeE


  . 

 

Next we assume that in nonrelativistic limit EcmE  2
0  and also the electrons potential 

energy is small, i.e. 2
0cmeE   . 

 
From the first equation 

 )ˆ()( AepceE


  , 
 
from the second one we express   as 
 

)ˆ(
2

1
2

)ˆ(

0
2

0

Aep
cmcmeE

Aepc 






 



  . 

 

After replacing   to the first equation we may write 
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 eAepAep
cm

E  ))ˆ())(ˆ((
2

1

0

  . 

 
The equation, obtained, is the Pauli equation. To write it in the standard form we must calculate 

))ˆ())(ˆ(( AepAep


  . Using  baba
 ))((  )( bai


 , we get 

 

))ˆ()ˆ(()ˆ())ˆ())(ˆ(( 2 AepAepiAepAepAep


   . 
 
The last term takes the form 
 

BeiAroteiAeiApeAepAep











 ˆ)ˆ()ˆ(  , 
and in total 

BeAepAepAep





  2)ˆ())ˆ())(ˆ((  . 
 
After substituting the results of our calculations we get the Pauli equation 
 

 eB
m

eAep
m

E 


0

2

0 2
)ˆ(

2
1  , 

 
from which the known relation between electron’s spin s  and its magnetic moment follows 
 

s
m
e

s


0

   

 

(here 0m  denotes the rest mass of electron, in previous paragraphs it was denoted by M). 
 
As we told before, Pauli introduced the magnetmoment term to its equation using common sense 
and general physical considerations. In the Dirac equation case it follows directly from equation 
and proves that Dirac equation describes electron with its real magnetic moment. 
 
29.2 First relativistic approximation. Next we go to the following approximation and take into 
account also the 22 / cv  terms. Since the general analysis is very complicated we treat only the 
fine structure of hydrogen atom. That is, we next treat the case where the magnetic field (vector 
potential) is absent and there exists only electrical field which is due to the proton (nucleus): 

0)(,0  rA 


. The equations, we started with, taking EcmE  2
0  are the following 

 

 pceE ˆ)( 
  , 

 

 pccmeE ˆ)2( 2
0


  . 

 
In next analyse we also want to go to two component equation, as we did in the nonrelativistic 
approximation case. However, it cannot be done simply by direct replacement, since the direct 
replacement changes the probability density. Therefore we first analyse the problem with 
probability density and find the possibility to go over to two component equation which 
preserves the probability. Probability density in the four component case is  
 

    . 
 
In the nonrelativistic case lower components are small 
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cm

p

02


  

 

and since cv /  is also very small, we get 0 . Therefore in that approximation 
 

    . 
 

But now, if we take into account terms with 22 / cv  , the product of lower components is 
nonzero 0 . For that reason we define a new two component quantity   
 

 N  
and find such N, which gives 

    . 
 
In other words it means, that if we replace   using the second equation, we also must perform 
the change  N . If we write it symbolically as  V̂ , we after the replacement have 
 

 NV̂  
 
and the problem is to find N which preserves the probability density 
 

   VNVNNN  . 
 
Next we start with direct calculations to find the “renorming” factor N. At first we find   from 
the second equation 










 p
eEcm

c ˆ
2 2

0

 . 

 

We rewrite it assuming that 2
02/)( cmeE   is of the same order of magnitude as 22 / cv  

( 0
2 2/)( mpUE  ), and get 
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We use it soon to replace it to equation. Since we take the terms up to 22 / cv , then calculating 
   up to 22 / cv  terms, we may take 

 




 N
cm

p

02

ˆ 


  , 

which must give us 

   )
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2
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 . 

 

Taking N as 2

2ˆ
1

c
pN


 , we get 22
08
1

cm
  and it gives the following renorming factor 

 

22
0

2

8

ˆ
1

cm
pN


  . 
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Going back to our equation, we must perform the following change on the right side of the first 
equation 
 







 )ˆ()
8
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2
1)
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If we also express the left hand side via  , we have 
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which in total gives us the equation 
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which after some simple calculations gives 
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  . 

 
Before starting further calculations we once more rewrite the above given equation. In the left 
side there remains Schrödinger equation without any perturbations, all the higher order terms 
(perturbations) are written on the right side. After that we treat the right side as some small 
perturbation to the ordinary Schrödinger equation 
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4
2
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ppeEppeE

cm
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  . 

 
Next we tranform the right side in order to eliminate the eE   term and terms connected with 
it. We start from the middle term, which using the properties of Pauli matrices gives 
 

)ˆ)(ˆ(ˆ)()ˆ)()(ˆ( 2 


 ppepeEpeEp  . 
 

Further, the second term here, using 



 iip ˆ , where 


 is the electric field strength 

connected with potential )(r  , gives 
 

)ˆ(ˆ)ˆ)(()ˆ)(ˆ( pepiepieppe 









   . 

 
In conclusion the middle term is 
 

)ˆ(ˆˆ)()ˆ)()(ˆ( 2 pepiepeEpeEp 






   . 

 

If we denote the right side term as Ĥ  , our perturbation Hamiltonian after replacements is 
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   . 

 

Next we express 2ˆ)( peE 
  in another way. Since without perturbation ( 0ˆ H ) we have 

equation 
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0)
2

ˆ
(

0
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 e
m
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 , 

we from it take 

0

2

2

ˆ

m
peE


   

and write 0
4 2/ˆ mp  as 
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m
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 . 

 
Transforming the right side, we get 
 

 222 ˆˆ)()(ˆ pepeEeEp 
  . 

 
The last term here gives 
 

pippppppp ˆ2)ˆ()ˆ(ˆ)ˆ(ˆˆˆ 2 



   . 

 
In conclusion we write 
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m
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and from here express 2ˆ)( peE 

  as 
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m
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   . 

 
In conclusion, our parturbation operator has the following final form 
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0

2
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0 8

)ˆ(
8

ˆ
)ˆ(

4
ˆ

cm
pe

cm
pp

cm
eH 





  . 

 
We denote the summands here as 1Ĥ   , 2Ĥ   and 3Ĥ   and start to analyse their physical meaning. 
 
29.3 Spin-orbital coupling. The first summand 
 

)ˆ(
4

ˆ
22

0
1 p

cm
eH 

   

 
is the spin-orbital coupling. In order to demonstrate it, we use the general central symmetric 
potential )(r   jaoks. Electrical field strength )(rgrad


 is written as 

 

r
r

dr
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Therefore 
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Using the spin operator 2/





s  it gives 

 

Ls
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ˆ
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1




  . 

 
For the Coulomb field rber /)(   and 2// rbedrd   (we next apply it in the case of 
hydrogen atom), we get 

L
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beLs
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   . 

 
It is interesting to note that our derivation gives the exast value for the coefficient before L


  

and it is different from that, we obtain from classical physics. 
 
 
29.4 Mass dependence from velocity. The second summand in perturbation is 
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  . 

 
The given term gives us correction to the kinetic energy due to the mass dependence from 
velocity (up to 22 / cv ). Indeed, relativistic kinetic energy is 
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In series expansion the first three terms are 
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and after replacement gives for kinetic energy 
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m
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The first term is the classical kinetic energy, the second one takes into account that the mass 
increases with velocity. Comparing it with our perturbation operator, we see, that it indeed takes 
into account the mass dependence from velocity. 
 
29.5 Contact interaction. The third summand 
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has no classical analogy and is connected with the charge density of nucleus. If we rewrite 2p̂  
as 

0

2
22222ˆ










 divgraddivp  , 

 
where   is charge which generates the electrical field acting on electron (we used the Gauss 
theorem). 
 
In Coulomb field rber /)(   the charge density is )()( rer 

  , therefore in our case 
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Since the corresponding operator is nonzero only on one point r  = 0 , it is called contact-
interation and it acts only to these states which in r  = 0 have nonzero values for wave functions 

0)0(  . In hydrogen atom these are s-states ( l = 0 ). 
 
29.6 Fine structure of H-atom. Next we analyse the change of hydrogen energy levels due to 
perturbations treated before. Our starting equation was 
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In the absence of perturbation (nonrelativistic limit), we have energy 
 

2n
REn


  . 

 
Next the energy corrections due to the added perturbations are equal to the diagonal matrix 
elements nlminlmi HE  ˆ   . 
 
Spin orbital coupling. We have to calculate 
 

nlmnlm r
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Since 2/)( 2qLs 


  , where lq   if 2/1 lj  and )1(  lq  if 2/1 lj  (see §23), 

then all reduces to the mean value of 3r   
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Mean value of  3r  is (see §10) 

)1)(2/1(
1
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lllnr
r  . 

 
Before we write down the energy correction, we use the following expresiions for the Rydberg 
constant, Bohr’s radius and fine structure constant  
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The final result is therefore 
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Since it is nonzero for states with 0l  (if 0l  then 01 E ), we write it the following 
general form, valid for each l   
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Relativistic mass correction. Calculating matrix elements of 2Ĥ   we assume that in 
nonrelativistic limit 
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and write 2Ĥ   as 
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The corresponding energy correstion reduces to the mean values of 1r  and 2r , which are 
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After some simple calculations the final result is 
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(valid for each possible values of  l  ). 
 
Contact interaction. Calculatin matrix elements of 3Ĥ   we must take into account that )(r  is 
nonzero in one point 0r , therefore 
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2)0()( nlmnlmnlm r  
  , 

 
The only wave functions which are nonero at 0r  are the s-state functions. Since  
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Therefore the corresponding energy correction is 
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Since it is valid for 0l  only, we write it as 
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Fine structure of hydrogen atom. The final result, adding all energy corrections give 
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If we express it via the total angular momentum (if 0l  total angular momentum is 

2/1 lj  , if 0l  2/1j ), and taking into account the corresponding values of q , the total 
energy correction is 
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In conclusion we derived the result, we already analysed in §23, from the relativistic Dirac 
equation. 
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30. Basics of scattering theory 
 
 
Under the scattering process we mean the inclination of particles from its previous direction due 
to the interaction with some other paticle or system. Scattering processes are the main 
experimental basic in particle physics. So the Rutherford experiments with α-particle scattering 
lead to tha discovery of atomic nucleus. Nowadays the scattering of particles in modern particle 
colliders is basic in investigations of particles and their characterics. For that reason the 
scattering theory is very important, but unfortunaly one of the most complicated chapters of 
physics. 
 
30.1 Cross-section, scattering amplitude. Consider the scattering of particle flux on some 
scatterer. Incoming particles are characterised by flux density lj , scattered particles in every 
element of solid angle dΩ are characterised by the number of particles hdN  per unit time. If we 
take z-axis along the flux of incoming particles and take the initial point of our coordinate 
system in scattering center (see figure), the number of scattered particles depends on angles θ 
and φ, i.e. ),( hdN . Differential cross section is defined as 
 

l

h

j
dNd ),(

),(


   . 

 
In scattering processes we assume that 
incoming particles are “flying” from 
infinity and are therefore free particles, 
after scattering we register particles also far 
from scatterer, therefore they may also be 
treated as free particles. 
 
Before we start more thorough analysis of 
scattering processes we express the 
differential cross section in another form. 
We express the number of scattered 
particles ),( hdN  via the flux of 
scattered particles, as 
 

dSjdN hh ),(),(    , 
 
where dS is the area, determined by solid angle 
 

 drdS 2  . 
 
In conclusion the diferential cross section is given, as follows 
 

dS
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  ,            or shorthand           dS

j
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l

h  . 

 
Here we see, that the dimension of differential cross section is the same as that of area. In 
microworld there is the corresponding special unit called barn (1 b = 10 28  m 2 ). 
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The classical analog of scattering processes is collisions of particles. At the beginning the 
particles are free, at close distances there start to act forces which change their directions 
(sometimes also the number of particles is changed) and in the final stage particles also move 
freely. For that reason we are able to use certain conservation laws, which give us a lot of useful 
information about collisions. The main problems in scattering theory is to find what interactions 
lead to the results, obtained from scattering experiments. In quantum mechanics we usually from 
the known potential energy calculate the properties of particles (its energies and wave 
functions), in the scattering theory the prolems, we must solve, are opposite – to find the 
corresponding potential energy which leads to certain scattering. 
 
As in classical scattering it is useful to analyse separately the processes of elastic scattering and 
nonelastic scattering. In elastic scattering the states of incoming particle and scattering centre do 
not change, in nonelastic scattering it changes. If we, for example consider the scattering of 
electrons on atoms (Franck-Hertz experiment), then in elastic scattering the electron’s energy 
and atom’s energy do not change, only the electon’s direction changes, in unelastic scattering 
electron gives some of its energy to atom and atom goes to some of its exited states (electrons 
direction is also changed). 
 
Since the mathematical theory of nonelastic processes is rather complicated, we restrict 
ourselves to the case of elastic scattering. In elastic scattering the inner state of scattering centre 
is unimportant and for that reason we charactrize it by some time independent potential energy 
 

)(rUU 
  

 
which gives the interaction between particles and scattering centre (in classical interpretation – it 
gives the force which acts on particles). 
 
In that case the problem reduses to the corresponding Schrödinger equation for stationary states 
 

 EU
M


2

2  . 

 
Energy E is here the energy of incoming particle, therefore it is positive. We define 
 

2
2 2



MEk    

 
and rewrite the Schrödinger equation for scattering processes in the following form 
 

 2
2 2)(



MUk   . 

 
In scattering processes we must assume that the potential energy is nonzero only in limited 
distances from scattering centre. All forces in nature quite rapidly decrease and therefore that 
restriction is not quite important. 
 
We are interested in specific solutions which desribes both – incoming particles and outcoming 
particles. Incoming particles are described (we choose the flux in the direction of z-axis) by the 
plane wave 
 

zkie  . 
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The outcoming particles far from scattering centre are described by spherical wave, moving 
away from scattering centre and depending on direction 
 

r
ef

rki

),(   . 

 
For that reason we search the general solution in form 
 

r
efer

rki
zki ),(),,(    . 

 
We see that our problem reduces to the calculation of amplitude ),( f  of scattered particles. 
It allows to find the flux of particles which are scattered in certain fixed direction. Since 
incoming particles are described by the plane wave zkie , the flux of incoming particles is 
proportional to its velocity 

v
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kjl 
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Since the flux of scattered particles is given by 
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r
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   , 

 
the differential cross section is expressed as 
 

 dfd 2),(),(   . 
 
As we see the amplitude of scattered wave gives us the differential cross section. 
 
30.2 Green functions method. Next we use the Green functions method and prove that the 
solution has indeed the above given form. We started from 
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2 2)(
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Next we introduce the Green function ),( rrG  , which satisfies 
 

)(),()( 2 rrrrGk 


 . 
 
Using the Green function (see the Appendix at the end) the general solution is given as 
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where )(0 r  is the solution of corresponding homogeneous equation 
 

0)( 0
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Of course that solution may be given as the plane wave zkie . 
 
For our problem the corresponding Green function is (see Aappendix) 
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As a result, we have obtained an integral equation for )(r  
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Next we analyse the integral and 
demonstrate that for large values of r 
we indeed get the solution in above 
given form. Assume that potential 
energy is nonzero at distances where 

Rr  . (In all practical cases one 
always finds the distance R, where 
potential energy is so small, that we 
may neglect it). Distances 

r >> R , 
 
we consider as large ones (then r >> r’) and therefore we may write 
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As a result the solution takes the form 
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where rrkk /


 . Scattering amplitude is therefore the following 
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As a final result we found the needed general form of solutions, but the way to real solutions is 
yet quite far. Here we reduced the Schrödinger equation to integral equation, which is more 
complicated in comparison with differential equation, but it helps to prove the general form of 
solutions. As follows we analyse some simple cases, where it is possible to use some 
approximation methods and where the integral form turns out to be useful. 
 
30.3 Born approximation. Next we assume that the scattering potential is small. Then we can 
use aproximation methods and take as the zeroth  approximation for wave function the wave 
function of incoming particles, which we write as  
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rkizki eer
  0)(0  , 

 
where 00 nkk 

  is the wave vector along the z-axis. 
 
Now the scattering amplitude is expressed as integral 
 

   VdrUeMf rKi )(
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  , 

where 
kkK o


  . 

 
(Vector K


 is sometimes called collision vector.) If the explicit expression for potential energy is 

given it is possible to calculate the first approximation of scattering amplitude and also the 
scattering cross section. 
 
Next we analyse the frequently appearing case, when the potential is central symmetric 
 

)(rUU   . 
 
Since it does not depend from angles, it is possible to integrate over the angles. Let us denote the 
angle between vectors K


 and r   as   and since cosrKrK 


, we have 
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Simple integration over angles gives 
 





0

2 )(sin)(2)( rdrrKrU
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Angle θ (see figure) is the angle between z-axis and the direction 
of scattered particles, therefore the scattering amplitude depends 
only from that angle, since 
 

2
sin20

knnkK 
  . 

 
Example. Yukawa potential energy. Next we calculate the scattering amplitude using Yukawa 
potential energy for the scattering centre. Yukawa derived that potential energy for nuclear 
forces and he takes it as the Coulomb potential energy (inversely proportional to distance) and 
cut it with decreasing exponent. Yukawa potential energy has a general form  
 

r
eArU

ra
)(  . 
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Exponent quarantees that the radius of forces is small, the quantity ar /10   is called the action 
radius of forces. 
 
Substituting potential energy, we must calculate the following integral 
 








0

2
0

2 )sin(2)(sin)(2)( rdrKe
K
AMrdrrKrU

K
Mf ra


  . 

 
Here we use the following integral, given in tables 
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and which gives the following scattering amplitude for the Yukawa potential 
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(we assumed that the forces are small). 
 
Scattering cross section is the following 
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In conclusion we shall analyse two special cases: 1) 10 Kr  ja 2) 10 Kr . 
 
1) Special case 10 Kr . That special case is connected with small forces and slowly moving 
particles. K is expressed via the velocity of incoming particles as 
 

2
sin2

2
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2
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The final result is 

4

4
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224
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It means that the scattering of slow particles on forces with small action radius is isothropic and 
do not depend on direction at all. 
 
2) In another special case 10 Kr  we get the result 
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224
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It means that for fast particles the result does not depend action radius ar /10  . 
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The last result allows to apply it also in the case of Coulomb forces ( 0r ). Treating, as an 
example, the scattering of α-particles on atomic nucleous, we take 
 

r
ebZrU
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)(   , 
 

(here 2ebZA  ) and get the well known Rutherford formula 
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Appendix. 
 
1. Green function’s method. Suppose, we have an equation 
 

 F̂  , 
 
where F̂  is some differential operator and   some given function. The problem is to find 
function  . 
 
To solve our equation we need the inverse operator 1ˆ F for operator F̂ . Inverse operator is 
defined as operator which satisfies 

1ˆˆˆˆ 11   FFFF  . 
 
Applying the inverse operator we get the solution 
 

 1ˆ  F  . 
 
If operator F̂  is a differential operator, the inverse operator is an integral operator. We write the 
solution  1ˆ  F  as (to simplify the analysis, we restrict ourselves to one-dimensional case) 
 

  xdxxxGx )(),()(   . 
 
If we apply operator F̂  and use  F̂ , we have 
 

  )()(),(ˆ)(ˆ xxdxxxGFxF   . 
 
The last equality holds, if 
 

)(),(ˆ xxxxGF    . 
 
Function ),( xxG  , which is the solution of the above given equation, is called the Green 
function of equation  F̂ . In order to solve our differential equation we must find the 
corresponding Green function. 
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Since the equation, we started with, is inhomogeneous, the general solution is some special 
solution of  F̂  plus the general solution of corresponding homogeneous equation 

0ˆ
0 F . Therefore the general solution is 

 

  xdxxxGxx )(),()()( 0   . 
 
In solving scattering problems the method of Green functions is also used, but in that case )(x  
also depends on the function we tried to find, something like )()()( xxAx   . That equation is 
more complicated and used in cases if one can apply some approximate methods. 
 
2. Green function for   )( 2k  . Now the Green function satisfies 
 

)(),()( 2 rrrrGk 


  . 
 
To find it, we present ),( rrG   as a Fourier’ integral 
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for the Dirac delta function )( rr 


  we use integral 
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and it must give as a result δ-function, we get 
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Therefore the Green function is presented as integral 
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Nex we calculate that integral using in q-space spherical coordinates. Then the integral, we have 
to calculate, is the following 
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Integrating over angles it remains the integral over q (but now from -∞ to +∞) 
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Since the given integral is integral from some function of complex variables which has two 
singular points kq  , the result is not unique, but depends on that, of how we choose the 
contour of integration. 
 
 
 
 
 
 
 
 
 
There are different choices, but the mostly used ones are the following two: one of the 
singularities remains inside the cntour, the other is outside (as in above given figures). For such 
integrals the method of residues is used and the result is i2  multiplied to residue in singular 
point. In the first case ( kq  ) we get the result 
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and in the second case ( kq  ) we get the result 
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In the first case we have the spherical waves which go away from the scattering centre 
(outcoming waves), in the second case we have incoming spherical waves. Calculating 
scattering amplitudes we must use Green function ),( rrG 

 , since scattering waves are 
outcoming waves. 
 
 


