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21. Time dependent perturbation theory 
 
 
Next we start to analyse the perturbations when the perturbation operator depends explicitly on 
time 

)('ˆ'ˆ tHH   . 
The total Hamilton operator 

)(ˆˆˆ
0 tHHH   

 
depends now on time and that means that the total energy of a given system is not conserved 
(see § 26). For that reason there are no energy level changes or splittings, but there appear 
transitions between different energy levels (radiation or absorption). 
 
21.1 General solution of Schrödinger equation without perturbation. At first we analyse the 
solutions without perturbation. We have eigenvalue problem for 0Ĥ  
 

nnn EH  0
ˆ , 

 
and we assume that it is solved. Then the possible energy values are, for example 
 

,, 21 EE  
 
and the corresponding stationary eigenfunctions are 
 

,, 21   . 
 
The general solution of the time dependent Schrödinger equation 
 





0Ĥ
t

i  

is an arbitrary linear combination 
 




 )(),( rectr n

tEi

n
n 

   , 

 
where ,, 21 cc  are some constants. 
 
21.2 General solution for the time dependent perturbation. Next we assume, that from some 
moment, for example, from t = 0 to our system starts to act some time dependent perturbation 

)('ˆ tH . We have to solve the next equation 
 



 )(ˆ tH
t

i  , 

where 
)('ˆˆ)(ˆ

0 tHHtH   
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Since for t < 0 the solution is expressed as an above given linear combination, we start to search 
the solution in form 




 )()(),( retctr n

tEi

n
n 

   , 

 
where coefficients )(tcn  depend on time. 
 
Of course, now we get some differential equation for )(tcn . Calculating separately both sides of 
Schrödinger equation, we have 
 

 

 

n

n
nnn

tEi

td
tcditcEre

t
i n ))()(()( 


    , 

 

 


n
nn

tEi

n rtHEetctHH n )())('ˆ()())('ˆˆ( 0


   . 

 
Equalizing, we get 
 





n

n

tEi

n
n

n

tEi
n rtHetcre
td
tcdi nn )()('ˆ)()()( 

    . 

 
Multiplying from left to )(* rm


  and integrating, we get the following equation 

 




 mn
tEi

n
tEi

m Hetce
td

tcd
i

nm
')(

)(
  , 

where 

nmnmmn tHdVtHH  )('ˆ)('ˆ*'    
 
are the matrix elements of perturbation operator (which, of course, now depend on time). 
 
Finally we move the exponent from left to the right side. Denoting 
 


nm

mn
EE 

  , 

 
we write the equations for )(tcm  in its final form 
 


n

nmn
tim tcHe

td
tcdi mn )('
)(   , 

 
where m = 1, 2, … . 
 
The last system of equations is exact and applicable for all perturbations (small ones and large 
ones), since we have made no additional restrictions. 
 
21.3 Small time dependent perturbation. Next we assume that )('ˆ tH  is some small 
perturbation. We expand coefficients )(tcn  as series 
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 210)( nnnn ccctc  , 
 
where each next term is of one order of value smaller than the previous one. Small perturbation 
means, that nonzero matrix elements mnH '  are of the same order of value, as 1

nc . Substituting 
coefficients and equating the terms with the same order of value, we get the next equations 
 

0
0


td

cd
i m  , 

 


n

nmn
tim cHe

td
cd

i mn 0
1

'  , 

 


n

nmn
tim cHe

td
cd

i mn 1
2

'  , 

 
… 

 
From the first equation it follows that 

.0 constcm   
 

Therefore choosing 0
mc  we are able to calculate step by step other coefficients 1

nc , 2
nc , … . 

 
21.4 First order approximation. At first we start to analyse the situation, when before the 
perturbation starts to act (t < 0) our system was in some stationary state with energy nE . 
Therefore we assume, that 

10 nc  , 
and other coefficients )(00 nmcm  . 
 
The equations for the first approximation then are 
 

mn
tim He

td
cd

i mn '
1

  , 

and the simple integration gives 

 dHe
i

c
t

mn
i

m
mn

0

1 '1


 . 

 
Since )('' tHH mnmn  , it is not possible to integrate without knowing the exact forms of these 
matrix elements. 
 
Note! In textbooks the expression, given above, is freguently written as 
 

tdHe
i

c
t

mn
ti

m
mn

0

1 '1 


 , 

 
which is mathematically not quite correct (we integrate to t over the same t). Therefore we have 
denoted the time under the integral by different letter τ. 



 118 

 
From the above given integrals we get one interesting and 
important conclusion. If our system is in some stationary 
state with energy nE , then after the time dependent 
perturbation is applied there open the possibilities for 
transitions to other states with energies mE  ( nm EE   or 

nm EE   ) if 01 mc . The probability of transition n   

m  depends on 
21

mc  . 
 
 
 

 
 
21.5 Harmonic perturbation. Next we specify the perturbation operator )('ˆ tH . We assume 
that the perturbation is harmonic with some frequency   (for example, the external 
electromagnetic wave with frequency   and wavelenght   ) and write )('ˆ tH  as 
 

titi ehehtH    ˆˆ)('ˆ  , 
 
where ĥ  is some time independent operator. Matrix elements of our perturbation operator are 
 

ti
mn

ti
mnmn ehehH   '  , 

 

where *)(ˆ  nmnmmn hhh   . In order to find 1
mc  one must calculate the integral 

 

  
t

mn
i

mn
i

m dhehe
i

c mnmn

0

)()(1 )(1



 . 

 
These integrals are quite elementary: 
 

)(
1

)(

)(

0

)(

0

)(



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






mn

ti
t

mn
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i

i
e

i
ede

mnmn
mn 

  . 

 
Therefore the final result is 
 






























mn

ti

mn
mn

ti

mnm
mnmn ehehc 111 )()(

1


 . 

 

Next we start to calculate the probabilities 
21

mc of transitions n   m, but before it we give some 
general remarks. Usually the frequency   is quite large (in the visible light case, for example   
~ 1510   1/s), and therefore for mn   both summands are very small, but if mn   (and  

0mn ), the first summand is large and the second summand is small and it should be omitted. 
Therefore, in that case one may analyse the first summand only. Since /)( nmmn EE  , then 
in the case of 0mn  there is some induced transition from some low energy level to some 
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higher energy level and the system absorbs from external radiation one photon with the 
frequency mn  .  But when 0mn  we get induced (stimulated) radiation. Now the first 
summand is small and the second one large. The frequency of external radiation equals to 

mn   . 
 
Next we analyse the abroption of radiation ( 0mn ). Omitting in 1

mc  the second summand, we 
have 











mn

ti
mn

m
mneh

c 1)(
1


 . 

 
The corresponding transition probability is 
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



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2
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2

2
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
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


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mn
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t
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
 . 

 
Let us analyse the result more closely. Transition probability depends on the modulus square 

2

mnh  of matrix element mnh  and also from the rapidly oscillating function of frequency   
 

2

2

)(
2

)(
sin









mn

mn t

 , 

 
which is mainly nonzero near mn  . Since the perturbation is small, the transition probability 
becomes essential after longer time intervals (theoretically, if t ). Next we demonstrate that 
in the limit t  the transition probability is proportional to time and we have the resonance 
transition, where mn  . 
 
To prove it, we use the following definition of  -function 
 

2

2sinlim)(
xA
Axx

A 



  , 

which in our case gives 
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2

)
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4
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
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t
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Therefore, for quite long time intervals we have 
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)(
2

lim 2

2
21 





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m

t
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cP


 . 

 
21.6 Transition probability per unit time. Since the transition probability is proportional to 
time, we usually talk about transition probablity per unit time  
 

)(
2

2

2




 mn
mnmn h

td
Pd


 . 

 
From here it follows that the transition takes place if frequency mn  , which is the resonance 

frequency and the probability is proportional to 
2

mnh  (and it also gives the intensity of 
corresponding spectral line). 
 
Instead of frequency one must use energy. Then 
 

)(
2 2







 nm
mnmn EE

h
td

Pd
 , 

 
which means that  nm EE  . 
 
It is obvious, that analyzing similarly the radiation processes, we get 
 

)(
2

2










nm
mnmn EE

h

td
Pd

 . 

 
In the next paragraph we take a more closer look to radiation processes and derive the selection 
rules for spectral transitions. 
 
 
 

22. Radiation transitions, selection rules 
 
 
 
22.1 Perturbation due to the external electromagnetic field. Assume, that on atom there acts 
some monochromatic electromagnetic wave (for example light wave), which has the electric 
field strength 

)(cos0 rkt 
   . 

 
Since the atomic diameter ( d  ~ m1010 ) is small, comparing the wave length of light (in the 
case of visible light   ~ m710 ), the quantity  /cos2cos rrkrk 


 in atomic 

region does not practically change and we therefore take rk 
  to be constant (dipole 

approximation). In that case rk 
  is some phase constant and we for simplicity take it equal to 

zero. Electrical field strength then changes harmonically with frequency ω 
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tcos0


 . 
 
Connecting the starting point of our coordinate system with nucleous, the electrical potential of a 
given external field is 


 rr )(  . 

 

(Indeed, if )()( zyx zyxr 


 , then from )(rgrad 
  we obtain the above given 

field strength.) 
 
If we assume that electrical field is directed along the z-axis: ),0,0( 


, then 

 
tzzz  cos)( 0  , 

 
and it gives to electron the additional energy 
 

tzezetU  cos)()( 0  . 
 
The last expression gives us the following time dependent perturbation operator 
 

)(
2

cos)('ˆ 0
0

titi eezetzetH  


  , 

 
which in turn gives us 

2
ˆˆ 0  zehh  . 

 
22.2 Transition probability. In induced transitions, both, for mn   and also for mn   
the transition probabilities are expressed via the matrix elements of z, as follows 
 

2
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2
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e
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





 , 

where 

 dVzzz nmnmmn  *  . 
 
Directing the field along the x- or y-axis, we analogically obtain 
 

2
2

2
0

2

mn
mn x

e
td

Pd




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 ,   2
2

2
0

2

mn
mn y

e
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Pd






 . 

 
It means that the transition probabilities are directly connected with matrix elements of radius 
vector ),,( zyxr 

  
)( ,, mnmnmnmn zyxr 

  . 
 
It is obvious that the transition is possible (allowed) only in cases, where 0mnr . If 0mnr , 
the transition probability is equal to zero and there are no such transition. Therefore the 
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investigation of matrix elements mnr  gives us information which transitions are possible and 
which ones are forbidden. The restrictions on transitions are called the selection rules. 
 
The radiation transitions, we analyze here, are usually called the dipole transitions, since the 
selection rules depend on the matrix elements mnmn red 

  of dipole moment 
 

red 
  

 
In addition to the dipole radiation there are another ones: elctrical quadrupole, magnetical dipole 
and other ones which depend on the corresponding system parameters. Since these have 
intensities which are five to six orders of magnitude smaller from dipole radiation, we do not 
analyse then here. 
 
22.3 Radiation transitions. From the elementary radiation 
theory, given in 1917 by A. Einstein, it follows that for 
induced radiation the probabilities are connected as follows 
 

td
PdBB

td
Pd nm

nmmn
mn  )()(   , 

 
where )(  is the intensity of external radiation and  

nmmn BB   is the probability of inner (induced) transitions (up 
and down). We have derived the same result from quantum mechanics 
 

td
Pd

z
e

td
Pd nm

mn
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
 2

2

2
0

2




 , 

 
since 22

nmmn zz   . As 2
0  characterizes the intensity of external radiation, we have, that the 

probability of atomic transitions  
2

mnnmmn zBB   . 
 
Therefore, quantum mechanics gives us the prescription to calculate Einstein coefficients. 
 
Einstein theory gives also the relation between spontaneous and induced transitions  
 

mnnm B
c

A 2

32  
  . 

 
Therefore the calculation of matrix elements of coordinates allows also to analyze the 
spontaneous radiation (the mean life of exited states, for example). 
 



 123 

 
Example 1. Harmonic oscillator. In the case of harmonic oscillator the selection rules are 
determined by the matrix elements of x-coordinate 
 

nmmn xx   . 
 
Using the results of §6 it follows that 
 

1,0  nmiffxmn  . 
 
From that it is obvious that transitions are allowed between 
neighbouring levels. In radiation the possible transitions are 

1 nn  and in absorbing 1 nn . In the first case energy 
  is radiated, in the second case the same energy is absorbed. 

In conclusion: harmonic oscillator always radiates and absorbes energy, which is equal to   
(Planck’s energy quantum). 
 
Example 2. Atomic transitions. Next we analyse transitions in atoms, when there is transition 
from the state mln  with energy nlE  to the state '''' mln  with energy ''lnE . Since the 
transition probabilities are determined by the matrix elements of x, y and z, it is easy to verify 
that the spin projection on transitions cannot change. Indeed, if we write the states as 
 

 2/1),,( Yrmln nlm  , 
 

'2/1''' ),,(''''  Yrmln mln  , 
 
we, for example, for ijx  have 
 

  2/1'2/1''' *)*('''' YYdVxnlmxmlnx nlmmlnij  . 
 
From the orthonormality of spin functions:   '2/1'2/1 * YY  it follows, that in all transitions 

 ' . Therefore it remains to calculate the matrix elements 
 

 dVxx nlmmlnij  *'''   
and analogically 

 dVyy nlmmlnij  *'''       and      dVzz nlmmlnij  *'''   . 
 
As follows, we demonstrate that from these integrals we get the following selection rules for 
spectral transitions 

1,0,1  ml  . 
 
Next we start to calculate integrals. In all cases we must calculate three integrals, over r,   and 
 , because 

),()(),,(  lmnlnlm YrRr   . 
 
In spherical coordinates we have 
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 cos,sinsin,cossin rzryrx   . 
 
To simplify calculations it is useful instead of x and y take the new variables 
 

  ii eriyxeriyx  sin,sin  , 
 
since now  , and z are expressed via the spherical functions ),(1 mY  , and we may next use 
the properties of spherical functions. The result is 
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8,),(
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8
101111 








 YrzYrYr    . 

 
Next we must calculate the following types of integrals 
 

 





4

''1''
0

3
'' )()(),,( dYYYdrrrRrRz lmmmlnllnijijij  , 

 
where   is correspondingly 3/8  , 3/8  or 3/4 . 
 
At first, we find the integrals over the variables   and  , which are to be integrated over the 
total solid angle. 
 
Starting from the matrix elements of z-coordinate, we must calcutale the integral 
 

 dYYY lmml 10''  . 

 
Using the relation between spherical functions (§ 17 Example 6), we get 
 

mlzmlzlm YYYY 1110      
 
(we do not write here the exact values of z  and z , since we are interested mainly in selection 
rules). Using these relations, we have 
 

   
 


4 4

1''1''
4

10'' dYYdYYdYYY mlmlzmlmlzlmml  . 

 
From the orthonormality of spherical functions, we get, that the result is nonzero, iff 
 

mm '      and     1'  ll  , 
or otherwise written 

0,1  ml  . 
 
In he case of matrix elements  of   and   we must calculate the integrals 
 

  dYYY lmml 11''  , 
which using 
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111111   mlmlml YYYY   , 
give 

    dYYdYYdYYY mlmlmlmllmml 111111''   . 
 
From those integrals it follows that the result is nonzero, iff 
 

1'  mm      ja     1'  ll  , 
or 

1,1  ml  . 
 
In conclusion we derived the general selection rules for dipole transitions 
 

1,0,1  ml  , 
 
(all other dipole transitions are forbidden). 
 
These selection rules are the most general ones, since for the quantum number n there are no 
restrictions, because the integrals 





0

3
1' drrRR nlln  

 
are for every n and n’ nonzero (the radial functions always overlapped and their product is 
nonzero). From these integrals of course depend the intensities of corresponding spectral lines. 
 
Condition 0,1  ml  means, that the radiation along the z-axis is linearly polarized, the 
radiation along the x- and y-plane has circular polarization ( 1,1  ml ). 
 
In many cases we use the total angular momentum 
 

sLJ 
  , 

 
but the selection rules for l and m remain the same. Since spin projection does not change, we 
get the selection rules 

1,0,1  jmj  . 
 
Since in general 2/1 lj , the rule 1l  allows also the transition 
 

0j  , 
 
(the same j give different l values (for example j = l + ½ and j = (l+1) – ½)). 
 
 
 
 
 
 
 
 



 126 

23. Fine structure of atomic levels 
 
 
The investigation of many-electron atoms is very complicated and there are no analytical 
solutions which give us electrons energy levels. In §32 we shall see that even for He atom there 
are no analytical solution at all and we must try to use different approximations in order to find 
energies and states of that atom. In this paragraph we analyse the structure of energy levels in 
atoms which have one valence electron. The first approximation is to use the so-called one 
electron approximation. 
 
In the H-atom case (one electron) we get, that in the Coulomb field ( )(rU   ~  r/1 ) the energies 
and wave functions are 

),()(),,(,  lmnlnlmn YrRrEE    
 
(moreover we get the exact expressions for energies and wave functions). 
 
In other cases the field acting on electron is not the Coulomb field, but as a first approximation 
we can assume, that the potential energy, acting on each electron, is central symmetric 

)(rUU  . Then the energies and wave functions are 
 

),()(),,(,  lmnlnlmnl YrRrEE    
 
(of course, now we do not have exact expressions for energies and radial functions, but know 
only the general dependence on quantum numbers). That approximation seems quite naive, but 
it gives us qualitative explanation for the periodic table of elements and for that reason it is 
usable, at least as the first approximation. 

 
Here we use it for atoms, which in outer shell 
have only one valence electron (as Li, Na, K, 
...). In one electron approximation we assume 
that the potential energy of that valence 
electron is central symmetric (it “moves” far 
from nucleous and other electrons which are in 
inner shells). The ground state of that valence 
electron is some ns state. For Na, as an 
example, there are in total 11 electrons, ten of 
them are in K (1s states) and L shells (2s and 
2p states), and the 11-th one is in M shell, its 
ground state is 3s state. It has possible exited 
states 3p, 4s, 4p and so on (see the energy 
levels diagram, where also  the possible 
spectral transitions are given). 
 
 

 
23.1 L-S coupling. In real atoms the structure of energy levels is more comlicated than we 
obtain from one electron approximation. There are more interactions between the electrons than 
the electrical one we discussed before. As we know, electron has spin and the corresponding 
magnetic moment, on the other hand it interacts with the magnetic moment which is due to the 
orbital angular momentum. Next we analyse what effects the latter interaction causes. Of course, 
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magnetic forces are in general quite weak and therefore the changes in energy levels are quite 
small and gives us the so-called fine structure of energy levels. 
 
As follows, we analyse the fine structure of atomic energy levels in atoms with one valence 
electron. In that case we instead of one energy level obtain usually two close lying levels. 
 
Due to the orbital “motion” electron has magnetic moment 
 

L
M
e 

2
  , 

 
due to spin it has magnetic moment 
 

s
M
e

s


  . 

 
The interaction between the magnetic momenta gives additional energy 
 

U   ~  s


   ~  sL 
  . 

 
Since it depends on orbital angular momentum and spin (intrinsic angular momentum) and for 
that reason it is called L-S coupling or spin-orbital coupling. 
 
If we add the spin-orbital coupling, we must add to the Hamilton operator the following 
additional term 

sLH 
 'ˆ   

 
(for simplicity we omit the operator marks). Since the classical physics do not give the correct 
expression for   (see §29), we do not specify it here, but since magnetical forces are in general 
weak, we assume that the additional term may be considered as a small perturbation. 
 
Hamiltonian operator is now 
 

sLrU
M

H 
 )(

2
ˆ

2

 . 

 
23.2 States in the case of L-S coupling. Next we see, that stationary states are not determined 
with the help of principal, orbital and magnetic quantum numbers, since now the conserved 
quantity is total angular momentum 

sLJ 
  . 

 
Next we find the quantities that commute with Hamilton operator and describe states in the case 
of L-S coupling. We see, that these quantities are 2J


 and zzz sLJ ˆˆˆ  , and also 2L


 and 2s . At 

first we remind the commutation relations for some known operators 
 

  zyx JiJJ ˆˆ,ˆ   ,     xzy JiJJ ˆˆ,ˆ   ,     yxz JiJJ ˆˆ,ˆ   , 
 

  zyx LiLL ˆˆ,ˆ   ,     xzy LiLL ˆˆ,ˆ   ,     yxz LiLL ˆˆ,ˆ   , 
 

  zyx siss ˆˆ,ˆ   ,     xzy siss ˆˆ,ˆ   ,     yxz siss ˆˆ,ˆ   , 
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orbital and spin operators mutually commute 
 

  0,ˆ ji sL  . 
From these relations it follows, that  
 

  0,)( 2  LsL


     and       0,)( 2  ssL 
 , 

 
from which we have 

  0,)( 2  JsL


 . 
 
Direct calculation gives that zL̂  and zŝ  separately do not commute with )( sL 

 , but their sum 
commutes 

  0ˆ,)(  zJsL 
 . 

Indeed, 
 

      )ˆˆˆˆ(ˆ,ˆˆˆ,ˆˆˆ,)( xyyxzyyzxxz LsLsiLLsLLsLsL  


 , 
 

      )ˆˆˆˆ(ˆ,ˆˆˆ,ˆˆˆ,)( yxxyzyyzxxz LsLsissLssLssL  


 . 
 
Also with Hamilton operator commute operators 2L


 ja 2s . In conclusion we get 

 
        0,ˆ,ˆˆ,ˆˆ,ˆ 222  sHLHJHJH z


 . 

 
In the case of the L-S coupling, therefore, in addition to the energy these four quantities are also 
determined and the physicsl state is now characterized by the following quantum numbers 
 

slmjn j  , 
 
where jm  characterizes the projection of the total angular momentum. If we analyse one 
electron states, then s=1/2 and it is not usually added, but considering many electron states the 
total spin must be also specified. 
 
For one electron states we from adding angular momenta have, that if orbital quantum number is 
l  the total angular momentum is 

2/1 lj  
 
(if 0l , then of course 2/1j  ). It means that previous energy levels nlE  in general split to 
two levels ( 2/1l  and 2/1l  levels). 
 
Next we find the corresponding energies, assuming that in the case of L-S coupling the 
perturbation is small. In order to take in consideration the L-S coupling we must find the 
eigenvalues of )( sL 

 . For that we take squares of both sides of sLJ 
  

 

)(2ˆˆˆ 222 sLsLJ 
  , 

which gives 

)ˆˆˆ(
2
1)( 222 sLJsL 


 . 
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In the state slmjn j  all these quatities are determined, therefore 
 

))1()1()1((
2

)(
2

 sslljjsL 
 . 

For 2/1 lj  we get 

lsL
2

)(
2

  

and for 2/1 lj  we get 

)1(
2

)(
2

 lsL 
 . 

 
These results gives the following energies if the L-S coupling is assumed: 
 

lElj nl 2
,2/1

2
  , 

 

)1(
2

,2/1
2

 lElj nl
  . 

 
In the L-S coupling case to the notation of states s, p, d, ... the lower index, which denotes the 
total angular momentum, is usually added. So we get states, as 
 

,,,,, 2/52/32/32/12/1 ddpps  , 
 
which all have different energies. 

 
As an example, we give the modified level 
structure for Na, where the L-S coupling is 
added (dotted lines give levels without L-S 
coupling). 
 
All the s-levels remain the same, but other 
levels split to two close lying levels. The more 
interesting result here is, that the Na yellow 
doublett lines with the corresponding wave 
lehgth 5890 Å and 5896 Å, are due to the 
transitions 2/12/12/12/3 33,33 spsp   . 
 
In conclusion: due to the L-S coupling we have 
fine structure of energy levels, since the 
splitting of levels is very small (approximately 

eV510 ). 
 
Since the fine structure is in general quite complicated to find, we restrict urselves to one 
valence electron case. In the He atom case when there is two electrons, we must take their total 
spin (which is zero or one). The energy levels are now triplets or singlets. Other cases are even 
more complicated. 
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23.3 Fine structure of hydrogen atom levels. Similarly to the previous case we must take into 
account the L-S coupling also in the hydrogen atom. But here is the situation different, since we 
in addition to the L-S coupling must take into consideration other physical effects (which we 
discuss in §28 ja §29, using the relativistic Dirac equation): mass dependence form velocity (in 
H-atom the electron is more close to the proton and has greater velocity) and also the specific 
contact interaction.  
 
Fine structure gives the following energy levels for H-atom 
 














 )

4
3

12
2(1 2

2

2 j
n

nn
REnj

  , 

 
where the constant cbe /2  is called the fine structure constant. Since 
 

137
100728,0

2


c

be


  

 
and energy corrections are proportional to its square, the order of energy corrections is eV510 . 

 
As an illustration we consider the levels 1s, 
2s ja 2p. The fine structure gives us new 
levels 2/11s , 2/12s , 2/12 p , 2/32 p . Since the 
energy now depends on total angular 
momentum, the levels 2/12s  and 2/12 p  
have the same energy. The comparison of 
levels are drawn on the left. As we see 
there are arise new possible spectral lines, 
which are from transitions  2/32 p  → 2/12s , 

2/32 p  → 2/11s  and 2/12 p  → 2/11s . 
 
The more detailed analysis of hydrogen levels 
demonstrates, that the levels 2/12s  and 2/12 p  
do not have the exactly same energy, but the 
energy of 2/12s  level lies a little bit higher 
(approximately one tenth of the difference 
between 2/32 p  and 2/12 p ). The real structure 
of n = 2 levels is given on the left fiqure. 
Since the energy of 2/12s  level is different 

from the energy of 2/12 p  level, we have the new spectral transition 2/12s  → 2/12 p  which has 
the wave legth 28 cm. 
 
The difference of energies between 2/12s  and 2/12 p  levels is called Lamb shift. It is explained 
in quantum electrodynamics and is due to the so called vacuum polarization (sea of virtual 
electron-positron pairs and virtual photons which act mainly on s-states). 
 
23.4 Hyperfine structure of H-atom levels. If we try to systematically analyse the electron 
interactions in atoms, we in addition to magnetic forces, treated before must also consider how 
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the magnetic momentum of nucleous (in H-atom proton) acts on electron. Hydrogen nucleous – 
proton – has spin ½, and magnetic momentum  
 

tt s
   . 

 
Instead of Bohr’s magneton we have there nuclear magneton (electron mass is changed to the 
proton mass) 

p
t M

e
2


  . 

 
Proton’s magnetic moment is greater that the nuclear magneton (so called anomalous magnetic 
moment) and equals 

tp  79,2  . 
 
Since it is three orders of magnitude less than Bohr’s magneton, it is logical to assume that its 
effects on energy levels are very small. The energy levels shift is in the same order, as the Lamb 
shift and is called the hyperfine structure of H-atom. 
 
We give only some remarks of hyperfine splitting, and as an example, analyse the splitting of 
ground level (1s-level). Now the orbital quantum and magnetic quantum numbers are equal to 
zero, we must take into account only the interaction between electron’s and proton’s magnetic 
momenta. It gives additional hamiltonian 
 

)('ˆ
etst ssH 

   . 
 
It is similar to the L-S coupling term, where instead of the orbital angular momentum, there is 
nuclear spin. 
 
The states are determined by the total spin et sss 

  , which has values 
 

01  sands  . 
 
Therefore we get triplet ( s = 1 ) and 
singlet ( s = 0 ) levels. The 
corresponding shifts of levels are 
proportional to eigenvalues of 
operator )( et ss 

 . Since 
 

)(
2
1)( 222

etet sssss 
  , 

 
we get, that  

for 
4

)(1
2

 et sss          and for 
4

3)(0
2

 et sss  . 
 

It means that the triplet level shifts up by 4/2  and the singlet level shifts by 4/3 2  down 
(see figure). 
 
Transition 01 11 ss   gives us the “cosmic” wave legth known from radioastronomy 
 

cm121,21  . 
 
(The difference between the hyperfine levels is of the same order as the Lamb shift.)  
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24. Zeeman effect 
 
 
In 1896 P. Zeeman discovered that in an external magnetic field the spectral lines of atoms are 
splitting, instead of one previous spectral line there arise some close lying spectral lines. 
Depending on the number of lines we have normal or anomalous Zeeman effect. If instead of 
one spectral line there are three lines, it is called normal Zeeman effect, since it was in principle 
possible to explain using classical electrodynamics. If insted of one spectral line we had even 
number of lines (two, four, ...), it is called anomalous Zeeman effect, since it had no explanation 
in classical physics. Since spectral lines are formed by transitions between energy levels, it 
means that in external magnetic fields energy levels of atoms must split due to the additional 
magnetic energy. We previously analysed different simple models that explain some special 
cases, here we give the more thorough explanation of Zeeman effect. 
 
24.1 Weak magnetic field. We start with the weak magnetic field case, which means that the 
additional energy which is due to the external magnetic field is less that the energy difference 
due to the L-S coupling. The latter also means that we must use the states which are labelled by 
the quantum numbers slmjn j ,,,,  

slmjn jmjn j
  . 

 

If there are no external field these states are eigenstates of the Hamilton operator 0Ĥ   
 

jj njmnjnjm EH  0
0

ˆ   , 
where 

sLrU
M

H 
 )(

2
ˆ

2

0  . 
 
As we in §18 demonstrated, in external magnetic field the following perturbation 
 

BsJ
M
eBsL

M
eH


 )(

2
)2(

2
ˆ  , 

 

where sLJ 
  is the total angular momentum, is added. 

 
Therefore we must to solve the eigenvalue problem 
 

 njEHH  )ˆˆ( 0  . 
 

If H ˆ  is a small perturbation, then the first order correction to energy (  0
njnj EE ) is 

 

jj njmHnjm  ˆ  . 
 
Now we had a problem, since the state jnjm  is not an eigenstate of the perturbation operator 
and therefore the direct calculation of its diagonal elements is impossible and we need to show 
some inventiveness. 
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We, as usually, assume that the external magnetic field is homogeneous, Then we must calculate 
matrix elements 

jjjj njmsJnjmnjmKnjm 
  

of the operator 
sJK 

  . 
 
Our states jnjm  are eigenstates of J


 , but not for s  (spin projection is not determined). 

 
Since we calculate matrix elements in the subspace of total angular momentum jnjm , we try 

to find an operator Ĝ , which satisfies 
 

sJJG ˆˆˆˆ 
   

 
(projects J


 along sJK 

 ). Next we demonstrate that such operator indeed exists and find it 
by direct calculation. 
 
First we multiply the above given expression from right to operator Ĵ


 

 

)ˆˆ(ˆˆˆ 22 JsJJG


  . 
 

In the sub-space of states jnjm  we instead of 2Ĵ


 may write )1(2 jj , and therefore 
 

)1(

ˆˆ
1ˆ

2 



jj
JsG




 . 

 

Next we calculate Js ˆˆ 
  and use the fact that 2Ĵ


 and also 2L̂


 and 2ŝ  are determined. We write 

sLJ ˆˆˆ 
  as 

LsJ ˆˆˆ 
  

and take the square of both sides 
222 ˆˆ)ˆˆ(2ˆ LssJJ


  . 
From here 

)ˆˆˆ(
2
1ˆˆ 222 LsJsJ


  . 

 

Since all the quatities on right are determined in state jnjm  , we can write that 
 

))1()1()1((
2

ˆˆ 2

 llssjjsJ   . 

 

Now it is obvious, that operator Ĝ  in the given subspace is equal to some number. Denoting 
gG ˆ , we have 

)1(2
)1()1()1(1





jj

llssjjg  . 

 
g is called the Lande factor. 
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Next we calculate the energy corrections. Taking magnetic field along the z-axis ),0,0( BB 


, 

the perturbation operator is 
 

)ˆˆ(
2

ˆ
zz sJ

M
eBH   . 

Since  

zzz JgsJ ˆˆˆ   , 
then 

zJ
M

egBH ˆ
2

ˆ   

and the correction to energy is 
 

jjj m
M
gBenjmHnjm

2
ˆ 

   

( jjjz njmmnjmJ ˆ ). 
 
In conclusion: in weak external magnetic field every level 0

njE  is splitting to 12 j  levels, 
which have energies equal to 

jnjnjm m
M
gBeEE

j 2
0 
  , 

where jjm j  ,, . 
 
Let us analyse our result more closely. If we have one electon states, then  
 

2/1 lj  
 
and therefore the total angular momentum j  is half-odd integer ( ,2/5,2/3,2/1 ) and 

12 j  is an even number. It means that instead of one level 0
njE  we in magnetic field have even 

number of close lying energy levels 
jnjmE . It is also important that the distance between these 

levels depends on Lande factor g, which for each l is different. For that reason the splitting of 
levels with the same j, but different l is also different (for example 2/3p  and 2/3d ). 
 
The next table gives Lande factors for 2/1 lj  ( 2/1s ). 
 
Table. 
 

 2/1s  2/1p  2/3p  2/3d  2/5d  
g  2  3/2  3/4  5/4  5/6  
 
It is possible to demonstrate that in spectral transitions (using selection rules) we always get 
even number of spectral lines (anomalous Zeeman effect). 
 
We omit the detailed analysis of spectral transitions and give some examples. 
 
Example 1. Take the transition 2/12 p  → 2/11s  in hydrogen atom (or transition 2/1)1( pn   → 

2/1ns  in some alcali metal). We draw the energy levels without magnetic field and in the 
presence of magnetic field. 
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Both levels split to two close lying levels, but distance between them is different (Lande factors 
2/3 and 2). The selection rules give us four close lying spectral lines wiht frequencis 321 ,,   
and 4 . 
 
Example 2. Transitions 2/32 p  → 2/12s  (or analogically 2/32 p  → 2/11s ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instead of one spectral line we get six close lying lines. 
 
From the above given one may conclude that in weak fields there exists only the anomalous 
Zeeman effect, but it is not true in general. There exist both possibilities. We treated before the 
case of one valence electron. But if in the outer shell there are more electrons and due to their 
mutual interaction their angular momenta and spins are added separately (the mostly exicting 
case), then that shell is characterized with total angular momentum and total spin 
 


i

iLL


  ,     
i

iss 
 . 

 

Total angular momentum now is sLJ ˆˆˆ 
 . As a final result we get the same formula for 

energy corrections and energy levels split to 12 j  levels. Lande factor is expressed as above, 
but L


 is total orbital angular momentum and s  total spin. 

 
Now there is possibility, that the total spin of whole outer shell is equal to zero ( s = 0 ). In that 
case 
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LJ ˆˆ 
      ja     1g  

 
and there is 12 l  splitted levels (odd number of levels) and independently on l the energy 
difference between levels is the same. The result is normal Zeeman effect, as our trivial cases 
treated in previous paragraphs (zero spin case, example 3 in §20). Examples are the singlet terms 
in Zn, Cd, and others, where total spin of outer shell is equal to zero. 
 
The second special case where we get normal Zeeman effect, is when the total angular 
momentum is equal to zero 0L


 and 0s , but has some even value. Now 

 
sJ 

      ja     2g  . 
 
Concluding the weak field case we explain of how to know whether the magnetic field is weak 
or not. We assumed that in the weak field case the difference between the splitted levels   is 
less that the difference between fine structure levels 'njnj EE  . Taking BMBe B  2/  , 
we get the following condition 
 

'njnjB EEB   . 
 
It allows to evaluate, if the magnetic field is indeed weak. 
 
As an example we get the hydrogen levels 2/32 p  and 2/12 p  . The difference between the levels 
is a little bit greater than 10-5 eV, therefore we take 
 

eVEE pp
5

22 10
2/12/3

  . 
 
If we take Bohr’s magneton in electronvolts to Tesla 
 

T
eV

T
J

B
524 1061027,9    , 

 
we may say that magnetic fields B < 0,1 T are weak fields. 
 
24.2 Strong magnetic fields. Next we shall show that in strong magnetic field there exists only 
normal Zeeman effect. If in the weak field there is anomalous Zeeman effect then in the strong 
field it goes over to the normal Zeeman effect.  That phenomenon is called Paschen-Back effect. 
 
However, we had analysed it before in one example, let us do it once more. The perturbation 
hamiltonian remains the same 

BsL
M
eH


 )2(

2
ˆ  , 

 
but now we do not express it via the total angular momentum. The reason is, that in strong fields 
the additional energy, connected with magnetic field are much greater than the difference 
between fine structure levels and therefore we do not take the L-S coupling into account. 
Therefore the starting hamiltonian, we use now, is 
 

)(
2

ˆ
2

0 rU
M

H 
  
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Now the states have certain angular momentum, its projection and certain spin projection 
 

  nlmnlnlm EH 0
0

ˆ   . 
 
The state  nlm  may be presented as 
 

  2/1),,( Yrnlm nlmnlm   . 
 
The perturbation operator is the same, as before 
 

)ˆ2ˆ(
2

ˆ
zz sL

M
eBH   . 

 

Now it is quite trivial to calculate its diagonal matrix elements, since in the state nlm  
 

 nlmmnlmLz ˆ  , 
 

 nlmnlms z ˆ  . 
 
Therefore the energy corrections are 
 

)2(
2

ˆ   m
M
BenlmHnlm   . 

 
Depending on the spin projection we have 2l+1 corrections 
 

llmmBB   ,,0,,)1(2/1   , 
 

llmmBB   ,,0,,)1(2/1   . 
 
(That result was already derived in §18 using Pauli equation.) 
 
Since in spectral transitions spin projection does not change, there are separate transitions 
between the 2/1  states and between the 2/1  states. As a result we always have 
normal Zeeman effect since g = 1. 
 
To demonstrete that we always have three spectral lines, we give two special examples. 
 
Example 3. Transition sp 12   (or sp 22  ). (The same is given in §18.) 
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Energy levels for 2/1  and 2/1  are given separately. Selection rules 1l  and 

1,0 m  give three spectral lines (the same for 2/1  and for 2/1 ). 
 
Example 4. Transition pd 23  . Not there are more splitted levels, but the result is the same – 
three spectral lines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From selection rules 1l  and 1,0 m  there are 9 possible transitions, but only 3 
different spectral lines. 
 
 
 

25. Dia- and paramagnetism of atoms 
 
 
Here we give a short discussion about the magnetism of atoms. In an exernal magnetic field 
matter acquires some magnetic moment, which is directed along the external magnetic field or in 
opposite direction and depending on it we correspondingly call para- and diamagnetism (we do 
not talk here about ferromagnetism, which is connected with certain solids). 
 
Next we shall analyse the behaviour of atoms (in gases or liquids) in an external magnetic field 
and take into account both – orbital magnetic moment and spin magnetic moment. External 
magnetic field we take along the z-axis 
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and use vector potential 
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Now we take the full hamiltonian (add also the term with vector potential square) 
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where 0Ĥ  describes electron when there are no external magnetic field present. 
 
The additional term we consider as an electrons total magnetic moment’s z  energy in an 
external field BU z  . From the last expression the total magnetic moment of an atom is 
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The first term does not depend on magnetic field, the second one depends. We show that the first 
term gives paramagnetism, the second one diamagnetism. 
 
Let us analyse the first magnetic moment 
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We already analysed it in Zeeman effect paragraph in weak and strong field cases. Here we 
analyse only the weak field case where the states are determined by the total angular momentum 
- jnjm . As we have already demonstrated there are 2j+1 different values 
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where g is Lande factor. (That result may be generalised to the case where l is the total angular 
momentum of electron shell and s is  its total spin. 
 
The given magnetic moment always generates paramagnetism. We must analyse the behaviour 
of atoms in the case of thermodynamic equilibrium at some temperature T. The probability that 
the magnetic moment’s projection is z  depends on its energy BE zi   and is given by the 
Boltzmann distribution 

iP    ~   kT
Ei

e


 . 
 
From the Boltzmann distribution it follows that the probability of states with negative energy 
( 0iE ) is always greater than the probability of states with positive energy and therefore the 
states with negative energy are preferred. To states with negative energy there correspond 
magnetic moments directed along the magnetic field ( 0z ) and therefore the total magnetic 
moment is also directed along the magnetic field and we get paramagnetism. 
 
The most important in paramagnetism is that there take part both – the orbital magnetic 
momentum and spin magnetic momentum. Since the analog of orbital magnetic momentum in 
classical physics is the orbiting electron, called by Ampere the atomar current, and its magnetic 
moment, there are great difference between classical and quantum physics, since diamagnetism 
in classical physics is connected with atomar currents. By quantum mechanics it gives us 
paramagnetism. It is interesting to know, that in electrodynamics it is proved that in classical 
physics matter has no magnetic properties at all! 
 
Next we analyse which physics is connected with the second term 
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Here the diagonal matrix elements of magnetic moment are the mean values of 22 yx   , 
therefore 
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Due to the minus sign it is always antiparallel to the magnetic field and therefore leads to 
diamagnetism. Since the mean value of 22 yx   is positive, diamagnetism is present in all 
atoms, but when there is paramagnetism also present, paramagnetism is always dominating, 
since the diamagnetic part is in all atoms smaller.  
 
Next we evaluate the order of magnitude of atomic magnetism. In the paramagnetics case the 
magnetic moment is of the same order of magnitude as Bohr’s magneton 
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In order to evaluate the diamagnetic term we take 
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where 2r  is the square of atomic radius. If we assume that, et zz    , we get the inequality 
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From the latter inequality it is obvious that for each practically realizable magnetic field the 
diamagnetic effect compared to the paramagnetic effect is insignificant. 
 
Diamagnetism appeared in atoms if there is even number of electrons and their magnetic 
moments compensate each other ( j = 0 ) (in other words, when paramagnetism is absent). One 
example is He, where in ground state L = 0 and s = 0. Diamagnetic moment is 
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Since the ground state has spherical symmetry, then for both electrons  22 yx  
3/22  rz  and we get 
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A detailed calculation gives that diamagnetic permeability of He is equal to 61087,1  , 

which is in good accordance with the experimental result 61088,1  . 


