17. Addition of angular momentum

17.1 Addition of angular momentum. Assume, that we have two independent subsystems with

corresponding angular momenta J , and J ,. It is natural to ask which is the total angular
momentum

<b

Joi+

5 -
(Example: electron in atom. It has angular some momentum i and spin 5 ).
The problem is: the first system is characterized by quantum number j, and has states
lim) . omy =i, =
the second one similarly by j, and states
|amy)  my =y, =y
which are the possible values of the total quantum number ;j and corresponding states | jm> ?

It is mathematically very complicated problem, therefore we give the result and later try to
show, analysing some special cases, that the result is correct. The total quantum number has the
corresponding values

R R Y A N VA A

Mathematically the problem is, as follows. If the angular momenta of subsystems are J , and

A
A A A

]2, their components J, ,J, ,J,, and j2x ,JAZ}, ,jZZ satisfy the standard commutation

X z

y
relations
[Jlx’leJ:ih']lz > [le’leJ:ih']lx > |_le"]li:th1)/’
|_']2x"]2yJ:ih‘]22 N |_']2y"]22J:ih‘]2x N |_J22’J2XJ:ih']2y'
Since subsystems are independent operators jlx ,jly ,jlz and '}2x ,jzy ,jzz mutually

commute, i.e. for each J); and J,; we have

|_J1i ,szJZO
(i=xYv,2]=X,Y, Z).
Now its is easy to verify, that projections of total angular momentum J
Jx:J1x+J2x, Jy:J1y+J2y, JZ:J12+J22

also satisty

91



From here we can conclude that the total angular momentum quantum number must have the
following values

13
20,122,
RN

as the quantum numbers j, and j,.

As we already told j has values

R R Y A N VA A

We give some simple considerations to convince that the above given expression may be valied.
The states of whole system | jm> are some linear combinations of states

| jimy)| jamy)
Total number of these states is (27, +1)(2, +1). Let us assume that j, > j,, then
FEN R A AR R A A
If we now calculate the total number of these states, we have a sum

JitJj2
D@2+ =2/ +D2jy +1)
J=h—J2

and gives the same result.

If we take

we see that magnetic quantum numbers must be added: m =m, +m,.
For the maximal projection m = j, + j, it corresponds only one combination of states
| i) Jada) -
To the next projection m = j, + j, —1 there are two possible combinations
i) a2 =1, i =Dljada) s
the next m = j, + j, —2 has three combinations
| a2 =2)s | =Wjaja =1 | =2)j22) »
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and so onup to m = j, — j, (if j, =2 j,), which has 2j, +1 combinations. In the case of other
diminishing projections the number of combinations remains the same, or starts to diminish.
Now we see that we have 2(j, +j,)+1 projections from m=j, +j, to m=—(j,+j,) ,
corresponding to j = j, + j,, 2(j, + j, —1)+1 projections corresponding to j = j, + j, —1, and
soonup to 2(j, — j,) +1 projections corresponding to j = j, — j,.

Some simple examples.

Example 1. In atoms L is orbital angular momentum and 5 is elektron’s spin. Total angular
momentum

J=L+5 .

Orbital quantum number / has values /=0,1,... , but spin quantum number s=1/2 ,
therefore the total angular momentum equals

L UzD = (=0)

N | —

Example 2. If j =4 and j, =2,then j=6,5,4,3,2 .

17.2 Clebsh-Gordan coefficients. States | jm> are linear combinations of states with the same
projection |j,m, >| j2m2>

|Jm> = chi]mz

m +my=m

j1m1>|j2m2> >

where the coefficients Cnilmz are called Clebsh-Gordani coefficients.

Derivation of Clebsh-Gordan coefficients is a quite complicated problem, therefore we give the
results for two special cases, we need in following lectures. The next tables give Clebsh-Gordan
coefficients for j, =1/2 and j, =1.

Table 1. j, =/ ja j, =1/2, m; is magnetic quantum number of j and o is the same of spin

(m, )

J o.=1/2 o.=-1/2

[+1/2 l+ m, 1m
2 21+1 2 21+1

[-1/2 rom, l+ m;
2 21+1 2 21+1




Table 2. j, =/ ja j, =1 (I projections are denoted by /_ and s = j, projections by s_).

[.=m+1

~.
t\

h
h

I
S,
J=1+1 \/(Z+m)(l+m+1) \/(z m+1)(1+m+1) \/(z m)(I —m+1

(21 +1)(2[ +2) QI+ +1) Q1 +1)(2 +2)
j=1 A +m)(=m+1) (I=m)( +m+1)
20(1+1) N (l +1) 20(1+1)

J=1-1 (I—m)(I—m+1) _d=m)(I+m) (I +m+ 1)1 +m)
2121 +1) 121 +1) 21121 +1)

Example3. /=0 and s =1/2.Now j =1/2. Denoting the states by| jm> , we get

|1/21/2> =YY 212 »

[1/2-1/2) =YY, 045 -

In two-component form (see next paragraph)

|1/21/2>=(Y"°], |1/2—1/2>=( ! ] :
0 Y,

Example 4. j, = j, =s=1/2.Now j=1,0 and from table 1 we get:

+Y

|11> 1/21/2Y1/21/2 > |10> \/—( 1/21/2 1/2 1/2 1/2—1/2Y1/21/2)’ |1_1>:Y]/2—]/2Y]/2—]/2 >

Y,

|00> -7 1/21/2) .

1/2-1/2

\/—( 1/21/2 ]/2 1/2

Example 5. /=1jas=1/2.Now j=3/2,1/2 . Using Table 1, we get

3/23/2) =YY, 015

2 1
|3/21/2> :\/;YIOYI/ZI/Z +—=Y Y000

NE)

1 2
|3/2_1/2>:EYI—]YI/21/2 +\/;Y10Y1/2—1/2 )

3/2=3/2)=Y,.Y, )15 »

1 2
|1/21/2> :_EYIOYI/ZI/Z +\/;Y11Y1/2—1/2 )
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2 1
|1/2—1/2> :\/;Y]—]Y]/ZI/Z _EYwY]/z—l/z .

Next is the same, but we for / =1 use spherical functions ¥, and for s =1/2 a two component
matrix. Now the general form is (spherical spinors)

v Yy 1/
A\ BV |

where o and S are Clebsh-Gordan coefficients. We get the representation

2 1
Y, \/;Ylo _3YH 0
Y3010 = 0l Yijar2 =| ) s Y3010 = > » Y3030 = v )
My -1 -

V3 3

Y212 = \é_ s Npoin = 1
2y -—="
\/; 11 NG} 10

Example 6. Here we give one useful expression for Y;,, Y, we need further. Now one must use
the inverse transformation of that given in Table 2. Shorthand of these expressions is

YlO Ylm :azYle +ﬁz Yl—lm ’

Vi1 Vi =5 Y5 + B3 Vs »
oo 3 [asn?-m? 5. - (3| PP-m’
2 N4\ I +1)@21+3)° 2 VNaz\@i+@iI-1)

“‘_P (¥ m)(I +1F m) ﬁ__P (£ m)I +1%m)
ToN8z\ QI+DQRI+3) ] T8z Qlen@i-1)

where

18. Elektron spin, Pauli equation
18.1 Elektron spin. In their year 1922 experiment Stern and Gerlach demonstrated that the
magnetic moment of electron is quantized and has only two projections
+ 1. and -, .

The answer was given in year 1925 by Uhlenbeck and Goudsmidt, assuming that electron had
intrinsic angular momentum, later called spin. From the general analysis it follows that we have
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two projections, if s=1/2, ie. the intrisic angular momentum has quantum number 1/2

(usually we say, that electron’s spin is 1/2).

Thefore we must describe it by two-component matrix
a
X= Ak

where the components describe two different spin projections.

N | S
Qi

Next we use the repseentation, given in §16. Spin s =1/2 operators we take in form s =

(0 1 Aalf0 —i afl O
Sx:_ s S, == . 5 Sz:_ 5
21 0 Yoo2li 0 210 -1

where 6 =(0,,0,,0.) are Pauli matrices
0 1 0 —i 1 0
o, = , O =| , O.= .
1 0 Yl 0 0 -1

One of the s_ eigenfunctions is
1
X2 = 0

and has spin projection o =+1/2 (s, = n , but usually we omit the Planck constant and say that

the projection is one half (in units of 7 )). Indeed

7]
S X2 = 5%1/2 )

and
0
X = 1

is another s_ eigenfunction and has spin projection o = —1/2

h

S X a2 = _51_1/2 .

For some normed state y which is expressed as
a
X = =ay,+by.,

b
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we get that with porobability |a|2 spin projection is o = +1/2 and with probability |b|2 spin

projectionis o =—1/2 .

Next some useful relations for Pauli matrices:

co,+to,0, =0, 0,0,+0,0,=0, 00,+0,0,=0.
Pauli matrices are Hermitean
+ _ + _ + _
(Gx) - Gx 5 (Gy) - Gy > (Gz) - GZ *

Ifwe have a-o , where a =(a,,a,,a.) is some arbitrary vector, then the 2x2 form of it is

o a, a,—ia,
a-o = ) .
a,+ia, —a,

From the Stern-Gerlach experiment it follows that spin and the corresponding magnetic moment
4, which is due to spin, are connected, as follows

s o__ €
:Lls M *
Comparing it with the relation
~ e -
=———VL
H 2M

we see, that the coefficients for angular and spin moments are different. It leads to some physical
effects (anomalous Zeeman effect, for example).

Electron orbital magnetic moment was equal to Bohr magneton u, =e#/2M , spin magnetic

moment is expressed as follows

i, = 6= ,6
lus 2M :uB :

18.2 Pauli equation. Pauli generalized Schrodinger equation to the form which takes into
consideration electron spin and its magnetic moment.

Schrodinger equation for an electron in external electromagnetic field, which we obtained
previously, was

where
A 1 -
H,=——(—ihV +ed)’ +U
2M
(U 1s the potential energy of mechanical forces and also electrical forces).
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That equation do not take into account the intrinsic magnetic moment of electron, which was
connected with its spin. The absent term was added by Pauli. He used the fact that in classical

electrodynamics every magnetic moment £ has in magnetic field B energy

AU =-[i-B .

and used the same expression for spin magnetic moment. He therefore added to Hamiltonian
operator the following term

H=-i -B=—5-B=u,6-B .

£
’ M
Since the term, added, is a 2x2 matrix, we must go over to two component wave functions
v (z//, (r}r)] |
v, (7,0
where the upper component w,(7,t) describes spin projection o =+1/2 and the lower
component , (7,t) spin projection o =—1/2.

Pauli equation for two component wave fuction ¥ is written as follows

ihE:I:IO‘P+/,tB6-E‘P :

Of course, we have here two equations for two components v, (7,¢) and v, (¥,t)

ow (Rt A " : :
Zh%:f[o W (F0) + g By, (7.0 + (B, =B, )y, (F.1))
. a ’_/:at 2 e ] 7 r
”’%ﬂo vo(F0)+ pay (B, +iB, ), (F.0) = By, (7.0)) -

In general we try to operate with two component quantities. In order to practice it, we derive the
continuity equation. At first, scalar product of ¥ is

v,

]:ll/l Wiy, Yy,
v,

Y = (l//] * oy, *)(

Since it is nonnegative, we treat it as probability density for two component wave function.

Proceeding from Pauli equation

we derive equation for W™ . It means to take complex conjutates and transposition of matrices.
We get
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it
o1

—H,*¥ +u,¥*6-B ,

since (6)" =6 and for matrices (4B)" =B A" .

Now we multiply tha starting equation from the left to ¥ and subract the second equation
which is multiplied from right to ¥ . The result is

o¥Y ov’

ih(P" Py WY=WHY - (H,* Y)Y+ u,(¥Y*(5-B)Y -V (6-B)Y) ,

which is written as

ihaﬁ(\r\m W HNY - (H,*¥)Y .
t

From the latter expression follows the continuity relation

a—p+div]:0 ,
ot
where
p=Y"Y=y *y, +y,*y,
and

-~ ih e -
i =—— (VP YWY -V (V) —-—A¥Y 'Y =
I =50 (( ) (VY)) v;

ih e -
Zw((v% *)V/l -V, *(VW1)+(VW2*)V/2 -V, *(Vllfz))—ﬁfl(% *Wl ty, *V/z)) .

Since y, and v, depend on each other, it is not easy to solve Pauli equation in the general case.
If we treat problems, where atom is in some external electromagnetic field, the problem is
simplified, since the extenal field in atoms may be assumed to be homogeneous (l;’ = const). If
we take the z-axis in the direction of magnetic field B= (0,0,B), we for v, and v, get
independent equations

. 0 ’_;at 3 7 i
Zh%:f[o v, (7, 0+ py By (F.1)

0 7.t A _ _
zh%ﬂo Vo (Fot)— 1y By, (7)) .

or in the two component form

v .
ih%—t:Ho‘P+uBBO'Z‘P .

Example. Atomic electron in external homogeneous magnetic field. Let us treat atomic
electron in homogeneous external magnetic field. We choose the following vector potential
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-1
A=_(-yB,xB,0) .

We omit the 4> term, as small (external fields are not strong compared with fields in atom).
Hamilton operator H 1» Where spin is yet not taken into account, is (see 13.4)

2
. B
g =—avu+ B
M M

If we add the term with spin magnetic moment
Hy = pugo,B,
we must solve the problem
AY = EY

where H = H, + H, . Next we write Hamilton operator H as

H=Hy+H',
where
2
0_—h—A+U
2M
and
~, eB -~
H :WLZ'F‘UBUZB .

In the absence of magnetic field we assume, that electron’s potential energy is central
symmetric: U = U(r) . Then energy depends on two quantum numbers and states (without spin)

depend on three quantum numbers, therefore

2

~ h
H =(—
0 l//nlm ( 2M

A + U) l//nlm = Enl l//nlm ’

where
l)[/n[m (r’g’q)) = Rn[ (F)Y[m(g’q)) .

Taking into account spin, we must find solutions for two-component wave function. Upper

component y, describes states with spin projection o =+1/2 and lower component y, states
with spin projection o = —1/2 . We assume that these solutions are also in form

ll[/]nlm (7’,9,@) = R]nl(r)Y]lm(Q’qD) b

ll[/2nlm(r’9’q0) = RZnI(F)YZIm(Q’qD) .

Since LAZqDI’2 =hme, ,,we for o =+1/2 have
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A

H'= u,B(m+1)
and for o =-1/2
H'= UgB(m-1) .
Therefore in the case of y,
Hy, =(H, + p,B(m+)y, = Ey,

and since Hyy, = E, v, we get that

E=FE,+u,B(m+1), m=+[,1-1,...,0, ...

Analogically in the case of v, we get

(Hy+ 1, B(m =)y, =Ey, ,
and

E=FE +u,B(m-1), m=+[,1-1,...,0,..

L=l

For both projections there are 2/+1 close lying energy levels with energy difference pu,B, for
o =+1/2 the levels are shifted one u,B up, for o =—1/2 similarly one u,B down. Since

py, ~107 J/T ,then for B=1T we have u,B ~10~* eV . It means that energy shift is quite

small.

Next figures illustrate the splitting of 2s and 2p levels in external magnetic field.

m— m={
m=0
2p — (L= 4) M=—f  —— m=4
w=0Q
W =4
W, e “a
Qj( wo CJL
y s i W:o
ds —1—1=0) -~ —— N
m=0
S=+ 6&=-4>
8=0 240

More throughly we analyse the results, obtained here, in §24. As we see, we get three close lying
spectral lines (transitions between o = +1/2 and o = —1/2 are forbidden).
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19. Time independent perturbation theory

There are not much problems which have general analytical solutions. But there are different
possibilities to solve them using different approximation methods. Here we start with problems
where there are some small perturbations acting in addition to usual forces.

We treat the following problem. We assume that we have solved the eigenvalue problem
Hyy, =Ey,

(we know energies E! and corresponding eigenfunctions ., also we assume here that for each

E there is only one eigenfunction w ). We have to solve the next eigenvalue problem

Hy,=E,y,
where

A=+ 0

and the additional term H' may be treated as a small perturbation (in each case the smallness of
perturbation must be separately verified). In general, we assume that the additional energy due to

the perturbation, is very small compared to energies E. and energy differences between levels.

19.1 Problem set up. In order to follow our step by step solving method more easily, we write
the energy operator in form

A

H=H,+\H'

where A is some helping parameter, which is useful to to compare the terms of the same order
of value. After solving the problems we at the end take 1 =1.

We write down the following series expansion

E,=E)+AE,+V E. +...,

W, =y + Ay Ayl
After substitution to the original eigenvalue problem

(Hy+ AHY ' + Ay + 2p? +. ) =(E' + AE) + PE> +.)w’ + Ay! + Py’ +.)
and equating the the terms with the same powers of 1, we get
X Hy)=Ely),
A: Hy,+H'y)=Ely,+Ey,,
i Hyl+H'y,=Ey:+Ey, +Ew,

and soon.
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The first of equations is satisfied, since we assumed that the starting eigenvalue problem has
been solved.

19.2 First order approximation. The next, i.e. the first order approximation we find from
Hy,+H'y, =Ely,+Ey, or (H,~E)y,=(E,~HW, .
From here we find the first approximation to energy and wave function. The first order to wave

function we express as a serie
1 _ 1.0
(//n - zam (//m
m

(v, is a complete ON system of functions).

After substitutings and using the fact that y” are the eigenfunctions of H o> We get
Multiplying from left to the w, conjugated and integrating, we obtain

1,0 10 1
a(Ey —Ey)=E, 63y —H'yy
where
Hy, = [@)*H'y)dv
are the matrix elements of perturbation operator.
Taking k = n, we obtain the first order correction to energy
Erlz = H r’m >
(these are the diagonal elements of perturbation operator).
If k& # n, we obtain the coefficients to the first approximation of wave function
Hiy,
0 [
E n - E k

al =

As we see, one of the coefficients - a, - remains undetermined. It is determined from the
normalization of the first order wave function

[+ 2 ayn* @ +AY awndv =1.

In the first order approximation of A coefficient a, must satisfy

al +@hHy*=0.
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As we see, it 1s imaginary and for simplicity we may take it equal to zero, therefore we shall take
1
a,=0.

In conclusion, the first order approximation (4 = 1) is

E,=E°+H!

nn >

!

H
0 n 0
WV, =V, +zﬁ‘”" :

k#n

19.3 Second order approximation. Let’s calculate the second order energy correction. It is
needed mostly in that case when the first order approximation is equal to zero.

For the second order approximation we use the equation
Hy!+H'y,=Ey:+Ey, +Ey, .
We repsesent /. as a pOwer serie

_ 2.0
- zam (//m
m

and substitute it together with the first order approximation to the above given equation. We get
! !

T H ' Hn
;E,Zaiv/%H ZE Eot//k EOZa t//m+HnnZEo—"Eowf+Efwf

k#n k#n k
Multiplying from the left with the w” conjugated and integrating, we have

H; H;
942 +z H o Hio =E%*+H! Z%5k+E 5.,
fzn E Ek kinE Ek

Taking r = n, we get the second order energy approximation

HH, H |
EZ _ nk‘ kn = )
P2y e DYy e

Taking r # n, we get the second order coefficients for wave function

aZ _ 2 H;’kal’m _ HI"IZHI’ZIZ
r 0 0 0 0 0 02 °
kin(En _Ek)(En _Er) (En _Er)

Analogically to the first order approximation a’ remains to be underdetermined and its is
determined from the normalization condition

J.(l//n +2’Zakl//k +ﬂ‘22akl//k) W, +2’Zakl//k +2‘22aka)dV =1,

k#n k#n
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whic for the second order terms gives

2
Ylai| "+ @) *+ai) =0
k#n

If we take a_ to be real, we have

2
> 1 1121 |an|
a”__Ezak __E 0 2042

k#n kin(En _Ek)

Example 1. Oscillator in constant force field. Assume that in addition to elastic force there
acts some constant force F. Its potential energy is

U=-Fx.
Then the following perturbation operator is added
H'=-Fx .
Next we treat it as a small perturbation (assuming that F'is small).

To find corrections to energy, one must calculate the matrix elements
H,, =-F j‘//n(x)xl//m(X)dx =-Fx,, .

From the previous paragraphs we know, that we have nonzero elements, iff m =n+1. The
exact form of these elements is

h | h
X = An+1 X, 1 = \/; .
n,n+l Mo n,n—1 Mo

Here we see that the first order energy coreection is equal to zero

1
E,=H,,=0.
Therefore we must examine the next approximation

P |H ‘2 1]

2
nn+l nn—l‘

Ey=Y = -
0 0 0 0 0 0
iEN-E} EY-E), EJ-Ep,

n+l

FZ
2Ma?

F2
:—(—
ho

2
xn,n—l‘ ) =-

2
xn,n+1‘ +

Here we have used E! = hw(n+1/2) and the above given matrix elements. As a result we see,
that the energy of all energy levels decreases to the same amount.
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Our example was trivial, since the problem can be solved exactly, transforming the general
expression of the total energy

2 2.2 2 2
M M F
=2, “’2" S e

It means that in the case of additional constant force the equilibrium point of oscillator is shifted
and also the equilibrium point of energy is shifted.

Example 2. Anharmonic oscillator. Assume that the following perturbation

H=ax’+ S x4 '
Uk)
is added, where o and S are some small coefficients. ?
We call it anharmonic oscillator, since the total potential
energy is not parabolic.

S P,Qr,

These anharmonic terms simply follow from the next \
physical considerations. Let us take some arbitrary
potential energy which is in zero point minimal. In small
deviations from the equilibrium we may it expand as 0

~

2 3 4
U =Ug+ 25 LY d d

it
dx 2! gx? 3!

3 4

|
+_
4!

Since U, =0 and in the minimum point also dU /dx =0 and d’U /dx* = k>0 we have

2
U(x):kxT+ocx3 + x4,

where in higher powers the coefficients are denoted by @ and S

At very small deviations from the rest we may it approximate with parabolic potential energy,
but if the deviations increase we must take into account also the next terms.

We start from the cubic term. Since
(), = [¥ylde=0
we must use the following, second order approximation

) ),
e e

Using the x* matrix elements, given in §15, we after some simple calculations have

15h%a* | 11
E" =- n+n+—).
! 4M3w4( 30)
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For the next, x* -term the matrix elements are nonzero: (x*), = 0. Its matrix elements are

calculated, using the matrix elements of x >, as

("), = 2 (), (3, = ((37),,)" +((3%),,) +((3),.0)°

and gives that the corresponding energy approximation is

3B, 1
E' = n"+n+—-)" .
! 2M2a12( 2)

Since it is also proportional to the Planck constant square, the both approximations are usually of
the same order and must be treated together.

The final result is

E, =hw(n +%) +E" +E' =

15h%a’
AM w*

328
M w?

1 2 11 2 1 2
=h +—-) — +n+—) + +n+—)" .
w(n 2) (n”+n 30) (n” +n 2)

The exact resut, of course, depends on ¢ and [, and on their signs.

20. Time independent perturbation theory(degenerate case)

Next we consider the case, where to the energy level E there corresponds several independent
states

ll[/nl > ll[/nZ 2000 ll[/nr :
(In H-aatom, for example to £, corresponds n” different states.)

Now we have
Hy, =E'y, ., i=1,2,...,r,

but also an arbitrary linear combination
0 r
l//n = z ci l)[/ni
i=l

satisfies the same eigenvalue problem
Hyy, =Ely, .

20.1 Problem set up. Let us take a new problem where to the pevious Hamiltonian operator
there is some small perturbation operator H' added. The total energy operator is
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and we are interested in problem
ﬁszw.
In general the degeneracy of states are connected with some symmetries (central symmetry or

others). Usually the perturbation has no such symmetry and for that reason the symmetry is
breaked and it leads to the splitting of energy levels E° and we get some set of closely laying

energy levels E° + AE .

Next we analyse of how the energies E' are splitted. We restrict ourselves to the first order
approximation, which was given in the previous paragraph

(H, = E)y, =(E,~H")W, .

where y! and E! are the first order improvements to the wave equation and energy
eigenvalues. Since we operate in the subspace, corresponding to £, we take zeroth order wave

function ! as an arbitrary linear combination of functions v, ¥, ,...,,. . Therefore we
analyse the equation

(Hy=EDy, =Y c(Es-H)y,, .
j=1
Multiplying from left to v, *, we integrate and use J. v, *w, dV =0;.

At first we demonstrate that the left side of the previous equality is equal to zero, i.e.
[v,*(H,—EDy,dv =0 .
If follows from the fact that H,, is Hermitean
[v.*(Hy = EDw,dv = [((H, - EDw,) *y,dV =0 .
For that reason the integral from the right side is also equal to zero

w3 v *(E'—H"W dV =0 .
— J ni n nj
=

Introducing matrix elements
H'gj = J.l//ni *H'an dV

(matrix elements in the subspace of functions v,y ,,...,¥,, ) and taking into account the

orthonormality of y,,, v, ,..., ¥, , we get he following equations

-

| . .
Z(En5U_Hij)cj:0, i=1,2,...,r.
j=1
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It is the linear homogeneous system for coefficients ¢, which is written in the matrix form as

1 ' ' '
E,-H'Y\y -H)}\ - -H'Y) |a
1 1 1 1
—H'yy  Ey-Hyy o —Hye ||
1 1 1 1
_Hrl _Hr2 En _Hrr Cr

20.2 Approximations to energy. There are nontrivial solutions, if the determinant of the system
is equal to zero. Denoting & = E, , we have

' ' '
€ H]] _le le
' ' '
H21 € H22 -H 2r
. =0.
' ' '
_Hr] _Hr2 g_Hrr

From it we have some r-th order equation for &
e o e . Ha, =0,
which has 7 real valued solutions (roots)

El»Epyeens €

”

(there are in general also coincident ones). Therefore, all nonzero solutions ¢, give us new
energy levels
i _ 0
E =E +¢,.

For each ¢, one can solve the system and find the corresponding ¢, , ¢}, ...,c., which in turn
gives the wave function

l//; = zcl] l)[/nj .
Jj=1
That is the first approximation which must be further used to calculate | and E?, if needed.

Example 1. Double degeneration. Assume that for £ we have two states v,, ,y,,. Then

0 _
l//n =¢ li[/n] +02l//n2 .

One must calculate the determinant

and solve the equation (¢ -H', (¢ -H',)-H', H', =0, 0r
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g’ -¢(H'\+H'y,)+H"\ H'y,-H',H', =0.
We got the quadratic equation ¢> —b ¢ +c = 0, which has two real number solutions.

Example 2. Stark effect: splitting of spectral lines in external electric field.

As an example we treat the two lowest energy levels of the H-aatom (» = 1 and n = 2) in
external electric field and demonstrate that there are no splitting for » = 1, but n = 2 level splits
to three levels.

Assume that in addition to Coulomb force on electron acts small external homogeneous
electrical force, caused by the electrical field E = (0, 0, E) directed along the z-axis. Electrical
potential is expressed as

#(z) =—zE,

therefore the additional potential energy is AU =eE z . It means that the following perturbation
H'=¢Ez

is added. That perturbation is indeed small: if we take z=r, (Bohr’s radius) and for

macroscopic field stregth quite large value E=10°V/m, we get AU ~107° eV, Coulomb
energy due to the nuclear charge is at the same distance approximately 18 eV.

We consider the splitting of energy levels for n = 2. It has energy

R
Egz__h_
4

2s and 2p give us four total states. We denote them

Vi=WVoo» Vo=Wogos Vis=Vo, Vu=V, -

Next we must calculate the matrix elements of perturbation Hamiltonian, which in our case are
the following integrals

H'l.].:eEJ.(//i *zy,;dV =eEz, .

As we see, we must calculate the matrix elements of z-coordinate. In §22 (selection rules) we
calculate the matrix elements of x, y and z separately, therefore we here use the rules which we
shall derive in §22, that for z-coordinate the only nonzero matrix elements are those, for which
Am =0 and Al ==x 1. In our case it means that the only nonzero matrix elements are

— %
z, and z, =z,

Next, using the explicit expressions of wave fuctions, we calculate z,, . The corresponding
wave functions are

”

1 r. o
V1 (.0.0) =Yg (1, 0.0) = ——— (2-)e 2",
2wy ry
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”

1 v
— e M cosh .

I//Z(F,Q,Q)) EWZ]O(’/’Q’Q)) :ﬁ
2

Since dV = r’drsin@d0de and z = rcos, we have to calculate three integrals

1 ®© p 7'4 _r T 2r
z, = 2——)—e "dr-|cos’0sin0do- |do .
? 3271'1”03 '([( ro)ro }[ }[ 14

Integral over ¢ gives 27, over 6 gives 2/3 (using the substitution u = cos@ ). The remaining
integral is

-
1% r..r.4 g
zn=——[@-T)()te ar.
24 ~([ o Ty
Next we substitute x = r /7, and use integrals

Ix" edx=T(n+1)=n!,
0

which give us

r
0

I(2—L)(L)4e 0 dr =r, I(2—x)x4e_xdx:—72r0 .
0 o 7o 0

The final result is

Nonzero matrix elements of perturbation Hamiltonian therefore are
H',=H', =-3er,E .

In order to find energy correstions & = E; we must calculate the following 4x4 determinant and
equal it to zero

e -H, 0 0
Hy & 00
0 0 & 0
0 0 0 ¢

Simple calculation gives
(e’ -H")=0.

We have two solutions & = 0, which mean that the energies of states v, =y,,, and v, =y, |
do not change. The remaining two solutions

— 12 _
&, =1H", =+3er,E



mean that in the subspace of states v, =y, and y, =y, ,, energy levels split and the energies
are

R R
E; :—Th+3€I’OE , E22 :—Th—3€VOE .

o Et I Splitting of 2s and 2p levels is illustrated
E, E; Y2u 2144 on the figure.
- —

Next we find the corresponding wave functions. For that we must solve the equation

£ deragE 0 0 )¢
3eryE £ 0 0fc| 0

0 0 ¢ 0f{c

0 0 0 ¢ )\ey

which reduses to

gcy+3eryEcy, =0,
3erEc; +ec, =0,
ecy; =0,
gcy =0

We see that for ¢ =0 we may take the same functions v, =vy,, and y,=vy, ,.
&, =13er, E we correspondingly get

For

V'SV —Wa  Ja  W'SWo Wy,

(unnormed). These functions must be used for the next approximations.

Ground state n = 1. Its energy does not change, because due to the previous conditions (Am =0
and A/ =+ 1) the matrix element z,, is equal to zero

o = J.ZWIZOO dv =0
(it 1s odd function of z).

Next we give the energy levels before and after splitting. Instead of one 2p — 1s spectral line
we in electrical field have three spectral lines.
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—— (M =0)
(W\:O 't{) 2s (WA= 4,~4)
S 'Zf (wm=0)
o
(w=0) ¥ As YYY (m=0)
: Ve
W, co,_
- -
E=0 €40

Example 3. Elementary Zeeman effect (zero spin electron). Suppose we had an atom and its
states are found from

H, l//r(z)lm = E;?z l//r(z)lm :
For each energy E', there are on 2/ +1 states v, (degenerate by m).

In homogeneous magnetic field directed along the z-axis the following perturbation operator
(see §13)
=B
2M
must be added. Supposing that the perturbation is small we next find the corrections to energy
level E' . At first,one must find the matrix elements H',, . It is easy to verify that the only

nonzero matrix elements are diagonal, i.e. if m'= m . Indeed

ehBm
2M

ehB

J‘Wnlm' >l<ll[/nlm dV = 2M m5

m'm *

eB ~
' — * —
H m'm M J‘Wnlm' Lz ll[/nlm v =

Energy corrections are calculated from

g_H'll 0 0
0 e-H'y 0|,
0 0 c—H'

which reduces to
(e-H'y Ne—H'pp) ...-(6-H'",, ) =0

We see that first order energy corrections (as in the nondegenerate case) are given in the
following way

gm = H'mm =
2M

m=u, Bm, m=1,1-1,...,-1[.

The eigenfunctions remain the same, since from
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(e-H', )c, =0
it follows, that for each € = ¢, we have ¢, # 0, the others ¢, are zero.
The result is that each energy level E, splits in magnetic field to 2/+1 levels having energies
Eppm = Epp + 115 Bm .

Difference between the neighboring levels AE = u, B is in all cases the same.

m=L
M:‘.z_
o AR
Ehﬁ E:(. m:ﬂ
w™M3-2
mz=-0
-—> -
=0 B+ O

It is interesting to note that due to the selection rules Al =1, Am =0, £1 (see §22) we instead
of one spectral line get always three spectral lines (normal Zeeman effect). Example: transition
3d — 2p.

wz=2
W= 4
. sd :::0|
waz-2,
We
¢ ] ] m= 1
Q‘F | s MV\::S)/)
B=0 2+0

In conclusion we estimate the magnitude of energy splitting. Since AE = u, B the distance
between levels is small in not very small magntic fields. If, for example, B =1 T ,we get

AE =93 107 J ~6-107 eV, which 1s in most cases smaller than the distance between
E nHll E nl

More detailly we analyse Zeeman effect in §24. Here we neglected the electron intrisic magnetic
moment which exists due to its spin.
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