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17. Addition of angular momentum 
 
 
17.1 Addition of angular momentum. Assume, that we have two independent subsystems with 

corresponding angular momenta 1Ĵ


 and 2Ĵ


. It is natural to ask which is the total angular 
momentum 

21
ˆˆˆ JJJ


  . 
 
(Example: electron in atom. It has angular some momentum L̂


 and spin ŝ ). 

 
The problem is: the first system is characterized by quantum number 1j  and has states 
 

11111 ,,, jjmmj    , 
 
the second one similarly by 2j  and states 
 

22222 ,,, jjmmj    , 
 
which are the possible values of the total quantum number j  and corresponding states jm ? 
 
It is mathematically very complicated problem, therefore we give the result and later try to 
show, analysing some special cases, that the result is correct. The total quantum number has the 
corresponding values 

212121 ,,1, jjjjjjj    . 
 

Mathematically the problem is, as follows. If the angular momenta of subsystems are 1Ĵ


 and 

2Ĵ


, their components zyx JJJ 111
ˆ,ˆ,ˆ  and zyx JJJ 222

ˆ,ˆ,ˆ  satisfy the standard commutation 
relations 

  zyx JihJJ 111
ˆˆ,ˆ    ,       xzy JihJJ 111

ˆˆ,ˆ    ,       yxz JihJJ 111
ˆˆ,ˆ   , 

 

  zyx JihJJ 222
ˆˆ,ˆ    ,       xzy JihJJ 222

ˆˆ,ˆ    ,       yxz JihJJ 222
ˆˆ,ˆ   . 

 
Since subsystems are independent operators zyx JJJ 111

ˆ,ˆ,ˆ  and zyx JJJ 222
ˆ,ˆ,ˆ  mutually 

commute, i.e. for each iJ1
ˆ  and jJ 2

ˆ  we have 
 

  0ˆ,ˆ
21 ji JJ  

(i = x, y, z; j = x, y, z). 
 

Now its is easy to verify, that projections of total angular momentum Ĵ


  
 

zzzyyyxxx JJJJJJJJJ 212121
ˆˆˆ,ˆˆˆ,ˆˆˆ   

 
also satisfy 
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  zyx JihJJ ˆˆ,ˆ    ,       xzy JihJJ ˆˆ,ˆ    ,       yxz JihJJ ˆˆ,ˆ   . 

 
From here we can conclude that the total angular momentum quantum number must have the 
following values 

,2,
2
3,1,

2
1,0j  , 

as the quantum numbers 1j  and 2j . 
 
As we already told j has values 
 

212121 ,,1, jjjjjjj    . 
 
We give some simple considerations to convince that the above given expression may be valied. 
The states of whole system jm  are some linear combinations of states 
 

2211 mjmj  . 
 
Total number of these states is )12)(12( 21  jj . Let us assume that 21 jj  , then 
 

212121 ,,1, jjjjjjj    . 
 
If we now calculate the total number of these states, we have a sum 
 

)12)(12()12( 21
21

21





jjj

jj

jjj
  

 
and gives the same result. 
 
If we take 
 

zzz JJJ 21
ˆˆˆ   , 

 
we see that magnetic quantum numbers must be added: 21 mmm  . 
 
For the maximal projection 21 jjm   it corresponds only one combination of states 
 

2211 jjjj  . 
 
To the next projection 121  jjm  there are two possible combinations 
 

22112211 1,1 jjjjjjjj   , 
 
the next 221  jjm  has three combinations 
 

221122112211 2,11,2 jjjjjjjjjjjj   , 
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and so on up to 21 jjm   (if 21 jj  ), which has 12 2 j  combinations. In the case of other 
diminishing projections the number of combinations remains the same, or starts to diminish.  
Now we see that we have 1)(2 21  jj  projections from 21 jjm   to )( 21 jjm   , 
corresponding to 21 jjj  , 1)1(2 21  jj   projections corresponding to 121  jjj , and 
so on up to 1)(2 21  jj  projections corresponding to  j  = 21 jj  . 
 
Some simple examples. 
Example 1. In atoms L


 is orbital angular momentum and s  is elektron’s spin. Total angular 

momentum 
sLJ 

  . 
 
Orbital quantum number l  has values ,1,0l  , but spin quantum number 2/1s  , 
therefore the total angular momentum equals 
 

)1(,
2
1

 llj  ,   )0(,
2
1

 lj  . 

 
Example 2. If  41 j  and 22 j , then 2,3,4,5,6j  . 
 
 
17.2 Clebsh-Gordan coefficients. States jm  are linear combinations of states with the same 

projection 2211 mjmj  

2211
2

21
mjmjCjm

mmm

j
mm



  , 

 
where the coefficients j

mmC 21
 are called Clebsh-Gordani coefficients. 

 
Derivation of Clebsh-Gordan coefficients is a quite complicated problem, therefore we give the 
results for two special cases, we need in following lectures. The next tables give Clebsh-Gordan 
coefficients for 2/12 j  and 12 j . 
 
Table 1. lj 1  ja 2/12 j , jm  is magnetic quantum number of j and z  is the same of spin 
( 2m ) 
 
j  2/1z  2/1z  

2/1l  

122
1



l
m j  

122
1



l
m j  

2/1l  

122
1



l
m j  

122
1



l
m j  
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Table 2. lj 1  ja 12 j  ( l  projections are denoted by zl  and 2js   projections by zs ). 
 
j  1 ml z  

1zs  
ml z   
0zs  

1 ml z  
1zs  

1 lj  

)22)(12(
)1)((




ll
mlml  

)1)(12(
)1)(1(




ll
mlml  

)22)(12(
1)((




ll
mlml  

lj   

)1(2
)1)((





ll

mlml  )1( ll
m  

)1(2
)1)((




ll
mlml  

1 lj  

)12(2
)1)((




ll
mlml  

)12(
))((





ll

mlml  
)12(2

))(1(



ll

mlml  

 
Example 3.  0l  and 2/1s . Now 2/1j . Denoting the states by jm , we get 
 

2/21/1002/21/1 YY  , 
 

2/12/1002/12/1  YY  . 
 
In two-component form (see next paragraph) 
 




















00

00 0
2/12/1,

0
2/21/1

Y
Y

 . 

 
Example 4. 2/121  sjj . Now 0,1j  and from table 1 we get: 
 

2/12/12/12/12/21/12/12/12/12/12/21/12/21/12/21/1 11,)(
2

110,11   YYYYYYYY  , 

 

)(
2

100 2/21/12/12/12/12/12/21/1 YYYY    . 

 
Example 5. 1l  ja 2/1s . Now 2/1,2/3j  . Using Table 1, we get 
 

2/21/1112/23/3 YY  , 
 

2/12/1112/21/110 3
1

3
22/21/3  YYYY  , 

 

2/12/1102/21/111 3
2

3
12/12/3   YYYY  , 

 

2/12/1112/32/3  YY  , 
 

2/12/1112/21/110 3
2

3
12/21/1  YYYY  , 
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2/12/1102/21/111 3
1

3
22/12/1   YYYY  . 

 
Next is the same, but we for 1l  use spherical functions mY1  and for 2/1s  a two component 
matrix. Now the general form is (spherical spinors) 
 

















2/11

2/11

j

j
j m

m
jm Y

Y
Y 


 , 

 
where   and   are Clebsh-Gordan coefficients. We get the representation 
 

































































11

2/32/3

10

11

2/12/3

11

10
2/21/3

11
2/21/3

0
,

3
2
3

1

,

3
1
3
2

,
0 Y

Y
Y

Y
Y

Y

Y
Y

Y
Y  , 

 













































10

11
2/12/1

11

10

2/21/1

3
1
3
2

,

3
2
3

1

Y

Y
Y

Y

Y
Y  . 

 
Example 6. Here we give one useful expression for '1 lmmYY  we need further. Now one must use 
the inverse transformation of that given in Table 2. Shorthand of these expressions is 
 

mlzmlzlm YYYY 1110     , 
 

111111  mlmllm YYYY     , 
where 

)12)(12(4
3,

)32)(12(
)1(

4
3 2222










ll
ml

ll
ml

zz 



  

 

)12)(12(
)1)((

8
3,

)32)(12(
)1)((

8
3










ll
mlml

ll
mlml





 

  . 

 
 
 

18. Elektron spin, Pauli equation 
 
 
18.1 Elektron spin. In their year 1922 experiment Stern and Gerlach demonstrated that the 
magnetic moment of electron is quantized and has only two projections  
 

zz and    . 
 
The answer was given in year 1925 by Uhlenbeck and Goudsmidt, assuming that electron had 
intrinsic angular momentum, later called spin. From the general analysis it follows that we have 
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two projections, if 2/1s , i.e. the intrisic angular momentum has quantum number 1/2 
(usually we say, that electron’s spin is 1/2). 
 
Thefore we must describe it by two-component matrix 
 










b
a

  , 

 
where the components describe two different spin projections. 
 

Next we use the repseentation, given in §16. Spin 2/1s  operators we take in form 


2
s : 

 


















 











10
01

2
,

0
0

2
,

01
10

2


zyx s
i

i
ss  , 

 
where  ),,( zyx  

  are Pauli matrices 
 


















 











10
01

,
0

0
,

01
10

zyx i
i

  . 

 
One of the zs  eigenfunctions is 











0
1

2/1  

 

and has spin projection 2/1  (
2


zs , but usually we omit the Planck constant and say that 

the projection is one half (in units of  )). Indeed 
 

2/12/1 2
 

zs , 

and 









 1

0
2/1  

 
is another zs  eigenfunction and has spin projection 2/1  
 

2/12/1 2    
zs  . 

 
For some normed state   which is expressed as 
 

2/12/1 







  ba
b
a
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we get that with porobability 2a  spin projection is 2/1  and with probability 2b  spin 
projection is 2/1  . 
 
Next some useful relations for Pauli matrices: 
 

yxzxzyzyxzyx iiiI   ,,,222  , 
 

0,0,0  xzzxzyyzxyyx   . 
 
Pauli matrices are Hermitean 
 

zzyyxx    )(,)(,)(  . 
 
If we have 


a , where ),,( zyx aaaa   is some arbitrary vector, then the 2x2 form of it is 

 













zyx

yxz

aiaa
iaaa

a 
  . 

 
From the Stern-Gerlach experiment it follows that spin and the corresponding magnetic moment 

s
  which is due to spin, are connected, as follows 

 

s
M
e

s


  . 

Comparing it with the relation 

L
M
e 

2
  

 
we see, that the coefficients for angular and spin moments are different. It leads to some physical 
effects (anomalous Zeeman effect, for example). 
 
Electron orbital magnetic moment was equal to Bohr magneton MeB 2/ , spin magnetic 
moment is expressed as follows 




Bs M
e


2

 . 

 
18.2 Pauli equation. Pauli generalized Schrödinger equation to the form which takes into 
consideration electron spin and its magnetic moment. 
 
Schrödinger equation for an electron in external electromagnetic field, which we obtained 
previously, was 





0Ĥt
i  , 

where 

UAei
M

H  2
0 )(

2
1ˆ 

  

 
(U is the potential energy of mechanical forces and also electrical forces).  
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That equation do not take into account the intrinsic magnetic moment of electron, which was 
connected with its spin. The absent term was added by Pauli. He used the fact that in classical 
electrodynamics every magnetic moment   has in magnetic field B


 energy 

 
BU


   . 
 
and used the same expression for spin magnetic moment. He therefore added to Hamiltonian 
operator the following term 

BBs
M
eBH Bs


 ̂'ˆ  . 

 
Since the term, added, is a 2x2 matrix, we must go over to two component wave functions 
 











),(
),(

2

1

tr
tr








 , 

 
where the upper component ),(1 tr  describes spin projection 2/1  and the lower 
component ),(2 tr  spin projection 2/1 . 
 
Pauli equation for two component wave fuction   is written as follows 
 



 BH
t

i B


 0

ˆ  . 

 
Of course, we have here two equations for two components ),(1 tr  and ),(2 tr  
 

)),()(),((),(ˆ),(
2110

1 triBBtrBtrH
t
tri yxzB




 





  , 

 

)),(),()((),(ˆ),(
2120

2 trBtriBBtrH
t
tri zyxB




 





  . 

 
In general we try to operate with two component quantities. In order to practice it, we derive the 
continuity equation. At first, scalar product of   is 
 

  2211
2

1
21 **** 




 







   . 

 
Since it is nonnegative, we treat it as probability density for two component wave function. 
 
Proceeding from Pauli equation 



 BH
t

i B


 0

ˆ  , 

 
we derive equation for   . It means to take complex conjutates and transposition of matrices. 
We get  
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BH
t

i B


 




 


*ˆ
0  , 

 
since 


)(  and for matrices   ABAB)(  . 

 
Now we multiply tha starting equation  from the left to   and subract the second equation 
which is multiplied from right to  . The result is 
 

))()(()*ˆ(ˆ)( 00 







 


 BBHH
tt

i B


   , 

 
which is written as 



  )*ˆ(ˆ)( 00 HH
t

i  . 

 
From the latter expression follows the continuity relation 
 

0

 jdiv
t

  , 

where 
2211 **     

and 

  A
M
e

M
ij


))()((

2
 

 

))**())(**)()(**)((
2 221122221111   A

M
e

M
i   . 

 
Since 1  and 2  depend on each other, it is not easy to solve Pauli equation in the general case. 
If we treat problems, where atom is in some external electromagnetic field, the problem is 
simplified, since the extenal field in atoms may be assumed to be homogeneous ( constB 


). If 

we take the z-axis in the direction of magnetic field ),0,0( BB 


, we for 1  and 2  get 
independent equations 

),(),(ˆ),(
110

1 trBtrH
t
tri B




 





  , 

 

)),(),(ˆ),(
220

2 trBtrH
t
tri B




 





  , 

 
or in the two component form 





zB BH
t

i 0
ˆ  . 

 
 
Example. Atomic electron in external homogeneous magnetic field. Let us treat atomic 
electron in homogeneous external magnetic field. We choose the following vector potential 
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)0,,(
2
1 xByBA 


 . 

  
We omit the 2A  term, as small (external fields are not strong compared with fields in atom). 
Hamilton operator 1Ĥ , where spin is yet not taken into account, is (see 13.4) 
 

zLM
eBU

M
H ˆ

22
ˆ

2

1 
  . 

 
If we add the term with spin magnetic moment  
 

BH zB2
ˆ  , 

 
we must solve the problem 
 

 EĤ  , 
 
where 21

ˆˆˆ HHH  . Next we write Hamilton operator Ĥ  as 
 

HHH  ˆˆˆ
0  , 

where 

U
M

H 
2

ˆ
2

0
  

and 
 

BL
M
eBH zBz  ˆ
2

ˆ  . 

 
In the absence of magnetic field we assume, that electron’s potential energy is central 
symmetric: )(rUU  . Then energy depends on two quantum numbers and states (without spin) 
depend on three quantum numbers, therefore 
 

nlmnlnlmnlm EU
M

H   )
2

(ˆ
2

0
  , 

where 
),()(),,(  lmnlnlm YrRr   . 

 
Taking into account spin, we must find solutions for two-component wave function. Upper 
component 1  describes states with spin projection 2/1  and lower component 2  states 
with spin projection 2/1  . We assume that these solutions are also in form 
 

),()(),,( 111  lmnlnlm YrRr   , 
 

),()(),,( 222  lmnlnlm YrRr   . 
 
Since 2,12,1

ˆ  mLz  , we for 2/1  have 
 



 101 

)1('ˆ  mBH B  
and for 2/1  

)1('ˆ  mBH B  . 
 
Therefore in the case of 1  

1101 ))1(ˆ(ˆ  EmBHH B    
 
and since 110

ˆ  nlEH  , we get that 
 

lllmmBEE Bnl  ,,0,,1,,)1(   . 
 
Analogically in the case of 2  we get 
 

220 ))1(ˆ(  EmBH B   , 
and 

lllmmBEE Bnl  ,,0,,1,,)1(   . 
 
For both projections there are 12 l  close lying energy levels with energy difference BB , for 

2/1  the levels are shifted one BB  up, for 2/1  similarly one BB  down. Since 
TJB /10 23 , then for TB 1  we have eVBB

410 . It means that energy shift is quite 
small. 
 
Next figures illustrate the splitting of 2s and 2p levels in external magnetic field. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More throughly we analyse the results, obtained here, in §24. As we see, we get three close lying 
spectral lines (transitions between 2/1  and 2/1  are forbidden). 
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19. Time independent perturbation theory 
 
 
There are not much problems which have general analytical solutions. But there are different 
possibilities to solve them using different approximation methods. Here we start with problems 
where there are some small perturbations acting in addition to usual forces. 
 
We treat the following problem. We assume that we have solved the eigenvalue problem 
 

000
0

ˆ
nnn EH    

 
(we know energies 0

nE  and corresponding eigenfunctions 0
n , also we assume here that for each 

0
nE  there is only one eigenfunction 0

n ). We have to solve the next eigenvalue problem 
 

nnn EH  ˆ  
where 

HHH  ˆˆˆ
0  

 

and the additional term H ˆ  may be treated as a small perturbation (in each case the smallness of 
perturbation must be separately verified). In general, we assume that the additional energy due to 
the perturbation, is very small compared to energies 0

nE  and energy differences between levels. 
 
19.1 Problem set up. In order to follow our step by step solving method more easily, we write 
the energy operator in form 

HHH  ˆˆˆ
0   

 
where   is some helping parameter, which is useful to to compare the terms of the same order 
of value. After solving the problems we at the end take 1 . 
 
We write down the following series expansion 
 

...2210  nnnn EEEE   , 
 

...2210  nnnn   . 
 
After substitution to the original eigenvalue problem 
 

...)...)((...))(ˆˆ( 221022102210
0  nnnnnnnnn EEEHH   

 
and equating the the terms with the same powers of  , we get 
 

000
0

0 ˆ: nnn EH    , 
 

011001
0

ˆˆ: nnnnnn EEHH    , 
 

02112012
0

2 ˆˆ: nnnnnnnn EEEHH    , 
 

.onsoand  
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The first of equations is satisfied, since we assumed that the starting eigenvalue problem has 
been solved. 
 
19.2 First order approximation. The next, i.e. the first order approximation we find from 
 

0110
0

011001
0 )'ˆ()ˆ(ˆˆ

nnnnnnnnnn HEEHorEEHH    . 
 
From here we find the first approximation to energy and wave function. The first order to wave 
function we express as a serie 


m

mmn a 011   

 ( 0
n  is a complete ON system of functions). 

 
After substitutings and using the fact that 0

n  are the eigenfunctions of 0Ĥ , we get 
 

 
m

nnmnmm HEEEa 010001 )'ˆ()(   . 

 
Multiplying from left to the 0

k  conjugated and integrating, we obtain 
 

knknnnkk HEEEa ')( 1001    , 
where 

  dVHH nkkn
00 ˆ*)(   

 
are the matrix elements of perturbation operator. 
 
Taking k = n, we obtain the first order correction to energy 
 

nnn HE 1  , 
 
(these are the diagonal elements of perturbation operator). 
 
If nk  , we obtain the coefficients to the first approximation of wave function 
 

00
1

kn

kn
k

EE
Ha



  . 

 
As we see, one of the coefficients - 1

na  - remains undetermined. It is determined from the 
normalization of the first order wave function 
 

   1)(*)( 010010 dVaa mmn
m

mmn   . 

 
In the first order approximation of   coefficient 1

na  must satisfy 
 

0)*( 11  nn aa  . 
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As we see, it is imaginary and for simplicity we may take it equal to zero, therefore we shall take 
01 na . 

 
In conclusion, the first order approximation (λ = 1) is 
 

nnnn HEE  0  , 
 


 




nk
k

kn

kn
nn EE

H 0
00

0   . 

 
19.3 Second order approximation. Let’s calculate the second order energy correction. It is 
needed mostly in that case when the first order approximation is equal to zero. 
 
For the second order approximation we use the equation 
 

02112012
0

ˆˆ
nnnnnnnn EEEHH    . 

 
We repsesent 2

n  as a power serie 


m

mmn a 022   

 
and substitute it together with the first order approximation to the above given equation. We get 
 

020
00

0200
00

020 ˆ
nn

nk
k

kn

kn
nn

m
mmn

nk
k

kn

kn

m
mmm E

EE
HHaE

EE
HHaE  








 


 

 
Multiplying from the left with the 0

r  conjugated and integrating, we have 
 

rnnrk
nk kn

kn
nnrn

nk kn

knrk
rr E

EE
HHaE

EE
HHaE  2

00
20

00
20 









 


 . 

 
Taking r = n, we get the second order energy approximation 
 


 









nk kn

nk

nk kn

knnk
n

EE

H

EE
HHE 00

2

00
2  . 

 
Taking nr  , we get the second order coefficients for wave function 
 

2000000
2

)())(( rn

nnrn

nk rnkn

knrk
r

EE
HH

EEEE
HHa









 


 . 

 
Analogically to the first order approximation 2

na  remains to be underdetermined and its is 
determined from the normalization condition 
 

  
 


nk k

kk
nk

kkn
k

kkkkn dVaaaa 1)(*)( 022010022010   , 
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whic for the second order terms gives 
 

0)*)(( 2221 


nn
nk

k aaa  . 

If we take 2
na  to be real, we have 

 


 




nk kn

nk

nk
kn

EE

H
aa 200

2
212

)(2
1

2
1  . 

 
 
Example 1. Oscillator in constant force field. Assume that in addition to elastic force there 
acts some constant force F. Its potential energy is 
 

xFU   . 
 
Then the following perturbation operator is added 
 

xFH ˆ  . 
 
Next we treat it as a small perturbation (assuming that F is small). 
 
To find corrections to energy, one must calculate the matrix elements 
 

nmmnnm xFdxxxxFH  




)()(   . 

 
From the previous paragraphs we know, that we have nonzero elements, iff 1 nm . The 
exact form of these elements is 
 

n
M

xn
M

x nnnn  2
,1

2 1,1,


   . 

 
Here we see that the first order energy coreection is equal to zero 
 

01  nnn HE  . 
 
Therefore we must examine the next approximation 
 


























 0

1
0

2
1

0
1

0

2
1

00

2
2

nn

nn

nn

nn

nk kn

nk
n

EE

H

EE

H

EE

H
E  

 

.
2

)( 2

22
1,

2
1,

2

 M
FxxF

nnnn  


 

 
Here we have used )2/1(0  nEn   and the above given matrix elements. As a result we see, 
that the energy of all energy levels decreases to the same amount. 
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Our example was trivial, since the problem can be solved exactly, transforming the general 
expression of the total energy 
 

2

2
2

2

22222

2
)(

2222 


M
F

M
FxM

M
pFxxM

M
pH   . 

 
It means that in the case of additional constant force the equilibrium point of oscillator is shifted 
and also the equilibrium point of energy is shifted. 
 
Example 2. Anharmonic oscillator. Assume that the following perturbation 
 

43'ˆ xxH     
 
is added, where   and   are some small coefficients. 
We call it anharmonic oscillator, since the total potential 
energy is not parabolic. 
 
These anharmonic terms simply follow from the next 
physical considerations. Let us take some arbitrary 
potential energy which is in zero point minimal. In small 
deviations from the equilibrium we may it expand as 
 

 4
4

4
3

3

3
2

2

2

0 !4
1

!3
1

!2
1)( x

dx
Udx

dx
Udx

dx
Udx

dx
dUUxU  . 

 
Since 00 U  and in the minimum point also 0/ dxdU  and 0/ 22  kdxUd  we have 
 

 43
2

2
)( xxkxxU   , 

 
where in higher powers the coefficients are denoted by   and  . 
 
At very small deviations from the rest we may it approximate with parabolic potential energy, 
but if the deviations increase we must take into account also the next terms.  
 
We start from the cubic term. Since 






 0)( 233 dxxx nnn   

 
we must use the following, second order approximation 
 

 


'

'
3

'
32

)'(
)()(

''
n

nnnn
n nn

xx
E





 . 

 

Using the 3x  matrix elements, given in §15, we after some simple calculations have 
 

)
30
11(

4
15'' 2

43

22

 nn
M

E n 
  . 
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For the next, 4x  -term the matrix elements are nonzero: 0)( 4 nnx . Its matrix elements are 
calculated, using the matrix elements of 2x , as 
 

   2
2

2222
2

2
'

2
'

24 ))(())(())(()()()( nnnnnnnnnnnn xxxxxx  

 
and gives that the corresponding energy approximation is 
 

22
22

2

)
2
1(

2
3'  nn
M

E n 
  . 

 
Since it is also proportional to the Planck constant square, the both approximations are usually of 
the same order and must be treated together. 
 
The final result is 

 nnn EEnE ''')
2
1(  

 

)
2
1(  n )

30
11(

4
15 2

43

22

 nn
M 

 22
22

2

)
2
1(

2
3

 nn
M 

  . 

 
The exact resut,  of course, depends on   and  , and on their signs. 
 
 
 
 

20. Time independent perturbation theory(degenerate case) 
 
 
Next we consider the case, where to the energy level 0

nE  there corresponds several independent 
states 

nrnn  ,,, 21   . 
 
(In H-aatom, for example to nE  corresponds 2n  different states.) 
 
Now we have 

riEH ninni ,,2,1,ˆ 0
0    , 

 
but also an arbitrary linear combination 
 





r

i
niin c

1

0   

satisfies the same eigenvalue problem 
000

0
ˆ

nnn EH    . 
 
20.1 Problem set up. Let us take a new problem where to the pevious Hamiltonian operator 
there is some small perturbation operator 'Ĥ  added. The total energy operator is 
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'ˆˆˆ

0 HHH   
and we are interested in problem 

 EH ˆ  . 
 
In general the degeneracy of states are connected with some symmetries (central symmetry or 
others). Usually the perturbation has no such symmetry and for that reason the symmetry is 
breaked and it leads to the splitting of energy levels 0

nE  and we get some set of closely laying 
energy levels nn EE 0 . 
 
Next we analyse of how the energies 0

nE  are splitted. We restrict ourselves to the first order 
approximation, which was given in the previous paragraph 
 

0110
0 )'ˆ()ˆ( nnnn HEEH    . 

 
where 1

n  and 1
nE  are the first order improvements to the wave equation and energy 

eigenvalues. Since we operate in the subspace, corresponding to 0
nE , we take zeroth order wave 

function 0
n  as an arbitrary linear combination of functions nrnn  ,,, 21   . Therefore we 

analyse the equation 

njn

r

j
jnn HEcEH  )'ˆ()ˆ( 1

1

10
0  



 . 

 
Multiplying from left to *ni , we integrate and use ijnjni dV  * . 
 
At first we demonstrate that the left side of the previous equality is equal to zero, i.e. 
 

  0)ˆ(* 10
0 dVEH nnni   . 

 
If follows from the fact that 0Ĥ  is Hermitean 
 

   0*))ˆ(()ˆ(* 10
0

10
0 dVEHdVEH nninnnni   . 

 
For that reason the integral from the right side is also equal to zero 
 

 



r

j
njnnij dVHEc

1

1 0)'ˆ(*   . 

Introducing matrix elements 

 dVHH njniij  'ˆ*'  
 
(matrix elements in the subspace of functions nrnn  ,,, 21  ) and taking into account the 
orthonormality of nrnn  ,,, 21   , we get he following equations 
 

ricHE
r

j
jijijn ,,2,1,0)'(

1

1 


  . 
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It is the linear homogeneous system for coefficients jc , which is written in the matrix form as 
 

0

'''

'''
'''

2

1

1
21

222
1

21

11211
1














































rrrnrr

rn

rn

c

c
c

HEHH

HHEH
HHHE











 . 

 
20.2 Approximations to energy. There are nontrivial solutions, if the determinant of the system 
is equal to zero. Denoting 1

nE , we have 
 

0

'''

'''
'''

21

22221

11211








rrrr

r

r

HHH

HHH
HHH














 . 

 
From it we have some r-th order equation for   
 

01
1  

r
rr    , 

 
which has r real valued solutions (roots) 
 

r ,,, 21   
 
(there are in general also coincident ones). Therefore, all nonzero solutions i  give us new 
energy levels 

in
i
n EE  0  . 

 
For each i  one can solve the system and find the corresponding i

r
ii ccc ,,, 21  , which in turn 

gives the wave function 





r

j
nj

i
j

i
n c

1

  . 

 
That is the first approximation which must be further used to calculate 1

n  and 2
nE , if needed. 

 
Example 1. Double degeneration. Assume that for 0

nE  we have two states 21 , nn  . Then 
 

2211
0

nnn cc    . 
 
One must calculate the determinant 
 

0
''

''

2221

1211 


HH
HH




  

 
and solve the equation 0'')')('( 21122211  HHHH  , or 
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0'''')''( 211222112211
2  HHHHHH . 

 
We got the quadratic equation 02  cb , which has two real number solutions.  
 
Example 2. Stark effect: splitting of spectral lines in external electric field. 
 
As an example we treat the two lowest energy levels of the H-aatom (n = 1 and n = 2) in 
external electric field and demonstrate that there are no splitting for n = 1, but n = 2 level splits 
to three levels. 
 
Assume that in addition to Coulomb force on electron acts small external homogeneous 
electrical force, caused by the electrical field ),0,0( 


 directed along the z-axis. Electrical 

potential is expressed as 
 zz)( , 

 
therefore the additional potential energy is zeU  . It means that the following perturbation 
 

zeH 'ˆ   
 
is added. That perturbation is indeed small: if we take 0rz   (Bohr’s radius) and for 
macroscopic field stregth quite large value mV /106 , we get eVU 510 , Coulomb 
energy due to the nuclear charge is at the same distance approximately 18 eV. 
 
We consider the splitting of energy levels for n = 2. It has energy 
 

4
0
2

RE   . 

 
2s and 2p give us four total states. We denote them 
 

1214211321022001 ,,,    . 
 
Next we must calculate the matrix elements of perturbation Hamiltonian, which in our case are 
the following integrals 

  ijjiij zedVzeH  *'  . 
 
As we see, we must calculate the matrix elements of z-coordinate. In §22 (selection rules) we 
calculate the matrix elements of x, y and z separately, therefore we here use the rules which we 
shall derive in §22, that for z-coordinate the only nonzero matrix elements are those, for which 

0m  and 1l . In our case it means that the only nonzero matrix elements are 
 

*122112 zzandz   . 
 
Next, using the explicit expressions of wave fuctions, we calculate 12z  . The corresponding 
wave functions are 

02

0
3

0

2001 )2(
32

1),,(),,( r
r

e
r
r

r
rr






  , 
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


 cos
32

1),,(),,( 02

0
3

0

2102
r
r

e
r
r

r
rr



  . 

 
Since  dddrrdV sin2  and cosrz  , we have to calculate three integrals 
 

 
  




2

00

2

0 0

4

0
3

0
12 sincos)2(

32
1

0 dddre
r
r

r
r

r
z r

r

 . 

 
Integral over   gives 2 , over   gives 2/3 (using the substitution cosu ). The remaining 
integral is 


 


0

4

00
12

0)()2(
24
1 dre

r
r

r
rz r

r

 . 

 
Next we substitute 0/ rrx   and use integrals 
 




 
0

!)1( nndxex xn  , 

which give us 





 


0

0
4

0
0

4

00
72)2()()2( 0 rdxexxrdre

r
r

r
r xr

r

 . 

 
The final result is 

02112 3rzz   . 
 
Nonzero matrix elements of perturbation Hamiltonian therefore are 
 

 02112 3'' reHH  . 
 
In order to find energy correstions 1

2E  we must calculate the following 4x4 determinant and 
equal it to zero 

0

000
000
00'
00'

12

12











H

H

 . 

 
Simple calculation gives 

0)'( 2
12

22 H  . 
 
We have two solutions 0 , which mean that the energies of states 2113    and 1214   
do not change. The remaining two solutions 
 

 0
2
122,1 3' reH  
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mean that in the subspace of states 2001    and 2102    energy levels split and the energies 
are 

 0
1
2 3

4
reRE   ,    0

2
2 3

4
reRE   . 

 
 
Splitting of 2s and 2p levels is illustrated 
on the figure. 
 
 
 
 
 

 
Next we find the corresponding wave functions. For that we must solve the equation 
 

0

000
000
003
003

4

3

2

1

0

0










































c
c
c
c

er
er







 

which reduses to 
03 201  cerc  , 

 

03 210  ccer   , 
 

03 c  , 
 

04 c  . 
 
We see that for 0  we may take the same functions 2113    and 1214  .  For 

 02,1 3 re  we correspondingly get 
 

210200'        ja     210200''    
 
(unnormed). These functions must be used for the next approximations. 
 
Ground state n = 1. Its energy does not change, because due to the previous conditions ( 0m  
and 1l ) the matrix element 11z  is equal to zero 
 

  02
10011 dVzz   

 
(it is odd function of z). 
 
Next we give the energy levels before and after splitting. Instead of one 2p   1s spectral line 
we in electrical field have three spectral lines. 
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Example 3. Elementary Zeeman effect (zero spin electron). Suppose we had an atom and its 
states are found from 

000
0

ˆ
nlmnlnlm EH    . 

 
For each energy 0

nlE  there are on 2l +1 states 0
nlm  (degenerate by m). 

 
In homogeneous magnetic field directed along the z-axis the following perturbation operator 
(see §13) 

zLM
eBH ˆ
2

'ˆ    
 
must be added. Supposing that the perturbation is small we next find the corrections to energy 
level 0

nlE . At first,one must find the matrix elements mmH '' . It is easy to verify that the only 
nonzero matrix elements are diagonal, i.e. if mm ' . Indeed 
 

   mmnlmnlmnlmznlmmm m
M
BedV

M
mBedVL

M
BeH '''' 2

*
2

ˆ*
2

'    . 

 
Energy corrections are calculated from 
 

0

'00

0'0
00'

22

11








rrH

H
H














 , 

which reduces to 
0)'()')('( 2211  rrHHH    

 
We see that first order energy corrections (as in the nondegenerate case) are given in the 
following way 
 

lllmmBm
M
BeH Bmmm  ,,1,,

2
' 


  . 

 
The eigenfunctions remain the same, since from 



 114 

 
0)'(  mmm cH  

 
it follows, that for each m   we have 0mc , the others nc  are zero. 
 
The result is that each energy level 0

nlE  splits in magnetic field to 2l+1 levels having energies 
 

mBEE Bnlnlm  0  . 
 
Difference between the neighboring levels BE B  is in all cases the same. 
 
 
 
 
 
 
 
 
 
 
 
 
It is interesting to note that due to the selection rules 1,0,1  ml  (see §22) we instead 
of one spectral line get always three spectral lines (normal Zeeman effect). Example: transition 
3d   2p. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In conclusion we estimate the magnitude of energy splitting. Since BE B  the distance 
between levels is small in not very small magntic fields. If, for example, B = 1 T ,we get 

24103,9 E  J 5106   eV, which is in most cases smaller than the distance between 

nlln EE 1  . 
More detailly we analyse Zeeman effect in §24. Here we neglected the electron intrisic magnetic 
moment which exists due to its spin. 
 


