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Example. Electron in homogeneous magnetic field. We consider the behaviour of free 
electron in homogeneous magnetic field B


. 

 
Classical motion is the following. If the velocity is perpenticular to magnetic field ( Bv


 ), 

magnetic Lorentz force BveF


  acts as a central force and electron moves on circular 
orbit. Since evBF  , the Newton II law gives the relation between the velocity and orbit radius 
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Next we find the frequency. Since Trv /2 , where T is 
period, we get 
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Which is called the Larmor frequency. Frequency is proportional to magnetic induction. 
 
If the velocity is not perpenticular to magnetic field and has some projection on the direction of 
magnetic field Bv , trajectory is spiral and particle is moving towards the magnetic field with 
constant velocity Bv . 
 
Next we treat it using quantum mechanics. Since in microworld there are no trajectories, we 
must solve the corresponding Schrödinger equation. As we shall see, it reduces to the equation 
of harmonic oscillator. 
 
We assume that magnetic field is oriented in z-axis and homogeneous: ),0,0( BB 


. Our 

problem is most easily solved if we take the following vector potential  
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General equation is 
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and which, using our vector potential, turns to 
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Therefore we must solve the following Schrödinger equation 
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Since the z derivative is only in the kinetic energy operator, it is logical to assume, that z-axis 
motion is uniform with some momentum zz kp   and energy MkE zz 2/)( 2  (as in the 
classical case). Therefore it is described by )exp( zki z . Also there are no y variables, and we try 
to describe the y-axis motion by similar exponent )exp( yi , where α is some unknown real 
parameter. 
 
Next we try to find the solution in form 
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Taking derivatives 
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we, after substitution, get the following equation for )(x  
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where zEE   is energy corresponding to the motion on x-y plane. 
 
There are linear and quadratic terms of x, but after the simple change of variables 
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and proper choice of δ there remains only qyadratic term. Let us take the following three terms 
from right. After simple algebra we get 
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and therefore  one must choose 
Be
 

 . Using the Larmor frequency 
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and our Schrödinger equation reduces to that of harmonic oscillator equation 
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(Parameter α finally drops out, and therefore has no physical meaning.) 
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Finally we obtained the harmonic oscillations on x’ axis with the Larmor frequency L  . It is 
logical and corresponds to the classical case, since the projection of circular motion on some 
axis gives us harmonic oscillations. Energy of oscillations is the following  
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Let us analyse the results. Energy in the homogeneous magnetic field is 
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If we omit the free motion, then on the x-y plane the energy is 
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We see that the energy is discrete and therefore quantized. It has interesting physical meaning. 
 
Diamagnetism of electronic gas. Our result explains the new interesting physical phenomenon: 
electronic gas is diamagnetic and magnetic moment is diamagnetic. 
 
As we know, any object with the magnetic moment zM  has in magnetic field energy 
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therefore electron itself has magnetic moment 
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Since it is opposite to magnetic field, we have diamgnetism. Moreover, magnetic moment is 
quantized. Magnetical properties of atoms we treat in §25. 
 
 

14. Gauge invariance 
 
 
Here we analyse quite interesting problem connected with Schrödinger equation introduced in 
the last paragraph: 
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We know from electrodynamics that potentials are not determined uniquely. We may always 
perform gauge transformations and change potentials to the new ones 
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(These leave the fields BjaE


 the same). On the other hand, if we choose new potentials, 

Schrödinger equation is changed and also its solution is changed. What to do to preserve its 
previous physical meaning?  
 
14.1 Gauge invariance of equation. Next we demonstrate, that by choosing new potentials, we 
must also change the old wave function   to some bew one  . That transformation is also 
called the gauge transformation.  
 
Next we demonstrate that if we perform the following gauge transformation 
 

 

ief

e  , 
we get Schrödinger equation 



 H
t

i ˆ  , 

 
where in Hamilton operator H ˆ  there are new potentials A


 ja  : 
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Our gauge transformation is complicated, that now it is cot some constant exponent, but it 
depends on coordinates and time, since ),( trff 

  depends on coordinates and time. Our 
calculations are therefore more complicated. At first we calculate derivatives from  . 
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analogically 
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Next we calcutate  )( Aei
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(In the last step we used the transformation of vector potential.) Using the last result it is obvious 
that 
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Using previous results we from the Schrödinger equation 
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get 
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which after cancelling exponent and  tf  /  gives us the equation we started with  
 



 UeAei

Mt
i 2)(

2
1 

  . 

 
Therefore, to preserve the invariance of Schrödinger eqation in gauge transformations of 
potentials 
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one must transforme the wave function in the following way 
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(in all three transformations ),( trff 

  is the same scalar function). The last transformation is 
similarly called gauge transformation. Also the physical meaning is preserved, since the 
probability density and probability current density remain the same 
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14.2 The general gauge invariance. Quantum mechanics is nonrelativistic, space and time are 
not related with each other. One may always perform tranformations 
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where R  is some arbitrary real number, and which are usually called phase transformations 
(in wave theories it means the chenge of phase). In relativistic world such transformations are 
not allowed since there exist limiting velocity c (the speed of electromagnetic waves in vacuum) 
and no information or action cannot move with velocities that exceed c. The constant phase 
trasformations mean tha we cheage the phase simultaneously in the whole space, which is from 
the relativistic point of view impossible. In relativistic world we may change phase only locally, 
in each point in space independently from the other points and also in each moment of time. 
Therefore in physics generally are allowed only local phase transformations 
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is some arbitrary scalar function. 
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In relativistic physics, especially in particle physics (relativistic quantum field theory), it is the 
general principle that any acceptable physical theory must be invariant under local phase 
transformations, which ususally are called gauge transformations: 
 

 ),( trie


  
 
and the field equations which describe some microparticlessuhtes must remain invariant under 
the above given trasformations. 
 
It is interesting to note that there are no invariant equation for the field Ψ only, i.e. equations  
 

0W  , 
 
where W is some function of derivatives. It appears, that these equations are somewhat specific, 
because we in addition to Ψ must introduce one (or more) vector fields ( ,A


), which are 

analogical to the electromagnetic fields, treated previously. Therefore the equations for physical 
fields are in form 
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 . 
 
If   describes fundamental particles, for example quarks, then additional vector fields (totally 8 
fields) describe particles which describe interactions between quarks. Thay are called gluons. 
 
 
 
 
 

15. Basics of representations theorie 
 
 
The formalism of quantum mechanics may be built up using matrices and matrix calculus. The 
first formulation of quantum of mechanics (W. Heisenberg, 1925) as we know based on 
matrices and is sometimes called the matrix mechanics, after that E. Schrödinger (1926) 
introdused wave function and corresponding wave equation (Schrödinger equation) and treated 
quantum mechnanics as eigenvalue problem (Schrödinger version was called wave mechanics). 
At first glance these theories were so different that it was problematical, whether these two 
theories describe the same physics. When E. Schrödinger proves that both theories are 
equivalent, it turns out that the Heisenberg quantum mechanics is the mayrix version of 
Schrödinger’s “wave” mechanics. Nowadays is Schrödinger version the mostly used one, but 
solving problems it is useful to know, how the physical quatities are represented in the matrix 
form. 
 
15.1 F-representation. Let us consider some Hermitean operator F̂  and let us assume that we 
have solved its eigenvalue problem 

nnn fF  ˆ  . 
 
The matrix repsesentation built up using eigenfuctions of operator F̂  we call the F-
representation. 
 



 73 

To simplify the further calculations we assume that the eigenvalues of F̂  are discrete and there 
are infinite number of eigenvalues and eigenfunctions (we also assume that to each eigenvalue 
there is only one eigenfunction) 

n ,,, 21   . 
 
(The generalization to other cases is in principal simple and needs no special mathematical 
tricks.) 
 
Since eigenfunctions of F̂  form a full set of functions, all the functions   from the same class 
of functions may be represented as an expansion 
 





n

i
iic

1
  , 

in Dirac notation 
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where  iic  . 
 
It is obvious, that the coefficients nccc ,,, 21   of the series expansion determine function   
uniquely. And vice versa, for each   the coefficients are determined uniquely. 
 
Therefore, proceeding from eigenfunctions of some Hermite operator all functions are 
representated by series of coefficients nccc ,,, 21  . We represent functions by one column 
matrices 
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where ))(( ic  is its symbolic writing. Therefore 
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We call it a F-representation of  . 
 
15.2 Bilinear form. Next we find the matrix representation of two function’s   and   bilinear 
form. Assuming that 
 





n

i
iid

1
  ,     or     




n

i
iid

1
  , 

 

we get the matrix form ))(( jd  of  . Since 
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If we introduce *   as a one row matrix  
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gives a bilinear form  . 
 
As each function    is represented as a matrix 
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its complex conjugate  *  is represented as a comjugated matrix ))(( ic , which is 
previous matrix transposed and then each ic  is replaced by its complex conjugated  
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Therefore we have 
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15.3 Matrix form of operators. Consider some operator Â , which transforms each function   
to some fixed function   

 Â  . 
 
We demonstrate that it is represented as a matrix product 
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where Â  is represented as a square matrix ))(( ija  with matrix elements 
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We start from  Â , i.e. 
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and represent χ and ψ by corresponding series 
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Multiplying from left with i  and using orthonormality, we may express the matrix elements 
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Since it may be written as a matrix product ))(())(())(( jiji cad  , where operator Â  is 
represented as a square matrix 
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with elements 

 dVAAa jijiij  ˆ*ˆ  . 
 
It is obvious that the product of matrices Â  ja B̂  is represented as a product of corresponding 
matrices (prove).  
 
If we have the matrix form of some operator Â , its conjugated operator has matrix elements 
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In quantum mechanics the physical quantities are represented with Hermitean matrices. 
Hermitean operators satisfy 

AA ˆˆ   , 
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which means that the elements of corresponding operator satisfy 
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Diagonal elements are real (if i = j) 
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elements on secondary diagonal ( ji  ) satisfy 
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Example 1. 2x2 matrix is Hermitean, if Raa 2211 ,  and *2112 aa   
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15.4 Eigenvalue problem. Eigenvalue problem is to solve the equation 
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Multiplying from left to i  
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It is the linear homogeneous system for kc  
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That system has nontrivial solutions iff the determinant is equal to zero 
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(the shorthand of it is 0))((det  ijij aa   ). 
 
Determinant gives us the following n-th degree equation 
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where n ,,, 21   are some numerical coefficients. In general such equations have n 
solutions 
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which now are the eigenvalues of operator Â . 
 
In order to calculate eigenfunctions of Â  we must replace ia  and solve the equation finding 
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Example 2. Operator given by arbitrary 2x2 matrix: 
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Eigenvalue problem gives a system 
 

0
2

1

2221

1211 


















c
c

aaa
aaa

 . 

 
Eigenvalues are calculated fron equation 
 

0))(( 21122211
2221

1211 



aaaaaa

aaa
aaa

 . 

 
Since it is a quadratic equation 
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2
4)(

2
2112

2
22112211 aaaaaa 




  . 

 
To find eigenfunctions we replace 1a  and then 2a , and find the corresponding ic . Replacing, 
for example 1a , we must solve the system 
 

0)( 2121111  cacaa  , 
 

0)( 2122121  caaca  . 
 
(In such systems one of coefficients is always arbitrary. If we take 1c  as known, 2c  is 
represented as 

1
12

111
2 c

a
aac 

  . 

 
Example 3. 2x2 Hermitean matrix. Now the matrix is 
 










2212

1211

* aa
aa

 , 

 
where Raa 2211 , . Solutions of corresponding quadratic equation are 
 

2
4)(

2

2
12

2
22112211

2,1
aaaaaa





  . 

 
As we see, eigenvalues are real numbers. 
 
Example 4. Pauli matrix y  
 








 


0
0
i

i
y  . 

 
Now 02211  aa , iaia  *, 1212 , therefore eigenvalues are 
 

1
2

4 2
12

2,1 
a

a  . 

 
Nxt we find eigenfunctions. For 11 a  we must solve equation 
 

0
1

1

2

1 


















c
c

i
i

 

or 
021  icc  , 

 

021  cic  . 
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We have only one independent equation. If we take 11 c , we get ic 2  and therefore the 
corresponding eigenfunction is 










i
1

1  . 

Similarly we for 12 a  get 












i

1
2  . 

 
15.5 Operator F̂  in F-representation. Operator F̂  itself is represented as a diaginal mtarix 
and its diagonal elements are its eigenvalues. Indeed 
 

ijjjijjiij ffFf   ˆ  . 
 
15.6 Connection between different representations. If we use F-repsesentation, we use as 
basis eigenfunctions n ,,, 21   ( iii fF  ˆ ) of operator F̂ . In the G-representation we 
similarly use eigenfunctions 

n ,,, 21   
 
of operator Ĝ . Let us take some arbitrary function  . Its F- and G-representations are 





n

i
iic

1
      →     




n

i
iic

1
  , 





n

i
iid

1
      →     




n

i
iid

1
  . 

Since 





n

k
kk

n

j
jj cd

11

  . 

 
Multiplying from left to i  and using orthonormality, we get the relation between the 
coefficients in different representations 
 





n

k
kkii cd

1
  . 

In the matrix form 
))(())(())(( jiji cUd  , 

 
where the matrix elements of transition matrix U  are 
 

 dVU jijiij  *  . 
 
It is easy to prove (prove it) that matrix U  is unitary: 
 

IUUehkUU   1  . 
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Example 5. Harmonic oscillator in E-representation. E-representation means that we use 
eigenfunctions of Hamilton operator Ĥ . We have  
 

)2/1(  nEn   , 
and 

)()( 2

22

xMHeAx n

xM

nn








  , 

 
n = 0, 1, 2, ... . Using integrals, calculated previously we write down some operators in matrix 
form. 
 
Since n = 0, 1, 2, ... we label the matrix elements of operator Â   as follows (matrices are infinite 
square matrices) 





























222120

121110

020100

))((
aaa
aaa
aaa

amn  . 

 
Hamilton operator Ĥ  is diagonal, matrix elements are energy eigenvalues, therefore 
 

mnmnnmn nEh  )2/1(    , 
 
or in matrix form 































500
030
001

2
))(( 

mnh  . 

 
Next the coordinate operator xx ˆ . Its matrix elements are 
 






 dxxxx nmnmmn  . 

 
Using the corresponding integrals (see §7), we obtain 
 

)1(
2 11   mnmnmn nn
M

x 

 , 

or in matrix form 

































020
201

010

2
))((

M
xmn  . 

 

Momentum operator 
dx
dip ˆ . Its matrix elements are 
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




 dx
dx
di

dx
dip n

mnmmn
   . 

 
Using integrals, we obtain 
 

)1(
2 11   mnmnmn nnMip 



 , 

or in matrix form 




































020
201

010

2
))(( Mipmn  . 

 
Using matrices it is possible to perform calsulations. For example, if it is needed to prove that 
  ipx ˆ, , we first calculate mnpx )ˆ(  and mnxp )ˆ( , using the above given matrices and that gives us 
the final result 

mnmn ixppx  )ˆˆ(  . 
 
Some results are more easily calculated using matrices. If we, for example try to find matrix 
elements of 2x  , it means calculation of matrix elements mnx )( 2  , which in turn means that one 
must multiply two x-matrices 


r

rnmrmn xxx )( 2  . 

 
Since mnx  has nonzero elements when 1 mn , we conclusion obtain 
 

 22
2 )2)(1()1()12(

2
)(   nmnmnmmn mmmmm

M
x 


  . 

 
(Compare it with the results of §7, obtained by integration.) 
 
We give also the natrix elements of 3x  . It is product of 2x  and x , therefore 
 


p

pnmpmn xxx )()( 23  . 

 
Nex we give only nonzero elements 
 

33
122

2
1

2
1

3 )
2

()(3)()()()()( n
M

xxxxx nnnnnnnnnn 


   , 

 

8
)2)(1()()()()( 3

322
2

3
3 

 
nnn

M
xxx nnnnnn 

  , 
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33
122

2
1

2
1

3 )
2

1()(3)()()()()( 
 

n
M

xxxxx nnnnnnnnnn 
  , 

 

8
)1)(2)(3()()()()( 3

322
2

3
3 

 
nnn

M
xxx nnnnnn 

  . 

 
( 3x  is symmetrical matrix, for example nnnn xx 1

3
1

3 )()(    and so on.) 
 
 
 

16. Matrix representation of angular momentum 
 
 
Assume that we have three Hermitean operators 
 

zyx JJJ ˆ,ˆ,ˆ  , 
 
which satisfy similar commutation relations as operators of orbital angular momentum xL̂ , yL̂  

and zL̂  (see §9) 
 

  zyx JihJJ ˆˆ,ˆ    ,       xzy JihJJ ˆˆ,ˆ    ,       yxz JihJJ ˆˆ,ˆ   . 
 
We inroduce one more operator 
 

2222 ˆˆˆˆ
zyx JJJJ 


 . 

 
It is easy to verity (prove), that  
 

0ˆ,ˆˆ,ˆˆ,ˆ 222 













zyx JJJJJJ


 . 

 
16.1 Eigenvalue problem. Similarly as for orbital angular momentum we may find the square 
and one projection (we choose again the z-projection). Therefore we start to solve eigenvalue 
problems 

jmmjmJjmJjmJ z 


 ˆ,ˆ 222  . 
 
and try to find J  and m , and also the matrix form of operators zyx JJJ ˆ,ˆ,ˆ . jm  are matrix 
elements of corresponding states. 
 
It is natural to use the representation where operators 2Ĵ


 and zĴ  are diagonal matrices (the J-

representation or angular momentum representation). We assume similarly to the orbital angular 
momentum that in the sub-space where 2J  is fixed the only variable is eigenvalue m of operator 

zĴ . Then the matrix elements of 2Ĵ


 are 
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mmmm JjmJjmJ '
222

'
2 ˆ')ˆ( 


  

and similarly for zĴ   

mmzmmz mjmJjmJ ''
ˆ')ˆ(   . 

 
Matrixelements of zĴ  are labelled by m  and we assume that the possible values of m are 
 

rmmm ,,, 21   , 
 
where )max(1 imm   is maximal and )min( ir mm   the lowest one. 
 
16.2 Restrictions to projections of zĴ  . Proceeding from 
 

2222 ˆˆˆˆ
zyx JJJJ 


 

 
we calculate diagonal element of both sides 
 

jmJjmjmJjmjmJjmjmJjm zyx
2222 ˆˆˆˆ 


, 

 
which is expressed as 

222222 )ˆ()ˆ( mJJJ mmymmx    .  
 

From the above given it follows that 
 

222222 mJormJ    . 
 
(Qunatities mmxJ )ˆ( 2  and mmyJ )ˆ( 2  are nonnegative. For example 
 

 
'

2
'

'
''

'

22 )ˆ()ˆ()ˆ(ˆ''ˆˆ)ˆ(
m

mmx
m

mmxmmx
m

xxxmmx JJJjmJjmjmJjmjmJjmJ  

 
In the last step we used that xĴ  is Hermitean.) 
 
From unequality 22 mJ   we get the following restrictions to m: 
 

JmmmJ r  ,,, 21   . 
 
16.3 Rising and lowering operators. Next we introduse operators which rise or lower 
eigenvalues of zĴ  . For that we instead of  xĴ  ja yĴ the following operators 
 

yx JiJJ ˆˆˆ    ,     yx JiJJ ˆˆˆ   , 
 
which satisfy 





  JJJJ ˆ)ˆ(,ˆ)ˆ(  . 

 
Now we find the following commutation relations 
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    JJJ z ˆˆ,ˆ     ,          JJJ z ˆˆ,ˆ   

 
It is easy to verify that operator Ĵ  rises eigenvalues  of zĴ  by +1 
 

jmJˆ    ~   1jm  
 
and operator Ĵ  lowers eigenvalues of zĴ  by -1 
 

jmJˆ    ~   1jm  . 
 
We prove only the first relation. Using     JJJ z ˆˆ,ˆ  , which we write as 
 

  JJJJJ zz
ˆˆˆˆˆ    

 
and applying it to jm , we get 
 

)ˆ()1()ˆ()ˆ(ˆ)ˆ(ˆ jmJmjmJjmJJjmJJ zz     . 
 
We see that indeed jmJ ˆ  is the eigenfuntion of zĴ  with eigenvalue )1( m .  
 
16.4 Eigenvalues.  Next we analyse the general structure of eigenvalues m. Let proceed from 
the state with maximal projection 

1jm  . 
 
Since the other values of m are smaller, we have 
 

0ˆ
1  jmJ  . 

 
Applying step by step the lowering operator, we get 
 

1
ˆ jmJ     ~   11 jm  

 

1
2)ˆ( jmJ     ~   21 jm  

 
. . . 

 

1
1)ˆ( jmJ r

    ~   )1(1  rjm  . 
 
Therefore the possible values of m  are 
 

)1(,,2,1, 1111  rmmmm   . 
 
Taking on the other hand the state with minimal projection 
 

rjm  , 
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we have 0ˆ  rjmJ  . Applying step by step the rising operator, we get 
 

rjmJ ˆ    ~   1rjm  
 

rjmJ 2)ˆ(     ~   2rjm  
 

. . . 
 

r
r jmJ 1)ˆ( 

    ~   )1(  rjmr  . 
 
It means that the possible values of m  are 
 

rrrr mmmrm ,1,2,,)1(    . 
 
We see that )1(1  rmm r  , but in ordes to determine eigenvalues we must separately find 

1m  or rm . 
 
Next we derive the relation between 1m  or rm  from which the exact eigenvalues are calculated. 
We start from 

2222 ˆˆˆˆ
zyx JJJJ 


 

 
and express it in the following two different ways. Using the products of rising and lowering 
operators zyx JJJJJ ˆˆˆˆˆ 22   and zyx JJJJJ ˆˆˆˆˆ 22   , we have 
 

zz JJJJJ ˆˆˆˆˆ 22 


   , 
 

zz JJJJJ ˆˆˆˆˆ 22 


   . 
 
At first we apply the first relation to the state with maximal projection 1jm  
 

11
2

11
2 ˆˆˆˆˆ jmJjmJjmJJjmJ zz 


   . 
 
Since 0ˆ

1  jmJ  and 111
ˆ jmmjmJ z  , we get 

 

111
2

1
2 )1(ˆ jmmmjmJ  


 , 
from which  

)1( 11
2  mmJ  . 

 
Applying similarly the second expression to the state with the lowest projection rjm  and using  

0ˆ  rjmJ , we get 

)1(2  rr mmJ  . 
 
Since both give the same result, we have 
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)1()1( 11

2  rr mmmmJ  . 
 
If we solve our quadratic equation for 1m  , we get 
 

rr mmjamm  11 1  
 
The first solution do not match, since rm  was the lowest one, therefore we have 
 

1mmr   . 
 
Finally we fing the general solution to our eigenvalue problems. Denoting 
 

jm 1  , 
we get 

)1(2  jjJ  
and the following values of  m  

jrjjj  )1(,,1,   . 
 
From these we see that the only possible values of j  are 
 

,2,
2
3,1,

2
1,0j  

 
(after n steps we must from j  reach to j , which means that jnj   and 2/nj  ). 
 
In conclusion the values of j  are integers or half odd integers. The projection quantum number 
m  has for given j   12  jr  possible values 
 

jjjjm  ,)1(,,1,   . 
 
Our eigenvalue problems, we started, are now written as 
 

jmmjmJjmjjjmJ z 


 ˆ,)1(ˆ 22  . 
 
Since our proof was general, since we used only general commutation relations of operators, our 
result is also general. It means that the only allowed values for j are 
 

,2,
2
3,1,

2
1,0j  . 

 
For angular momentum there were only integer values ,2,1,0 jl  allowed, but in physics 
there are physical objects, which angular momentum is equal to some half odd integer. Next we 
see that electron has intrinsic angular momentum, called spin, which has value s = j = 1/2). 
 

16.5 Matrix form of operators. Next we derive tha matrix form of xĴ  and yĴ  . Since 2Ĵ


 and 

zĴ  were diagonal )12()12(  jj  square matrices, matrices xĴ  and yĴ  are not diagonal.  



 87 

 
At first we derive matrix elements of Ĵ  ja Ĵ  , since it is simpler. We start from 
 

zz JJJJJ ˆˆˆˆˆ 22 


    
 

and calculate the following matrix element jmJjm 2ˆ'


 for 2Ĵ


 
 

jmjmmmjmJJjmjmJjm ')1(ˆˆ'ˆ' 22   


 , 
 
which is written as 
 

mmmm mmjmJJjmjj '
2

'
2 )1(ˆˆ')1(      . 

 
At first we see, that in the case of mm '  we have 
 

0ˆˆ'  jmJJjm  , 
 
and for that reason we consider the case mm '  
 

)1(ˆˆ)1( 22   mmjmJJjmjj   . 
It gives 

)1)(())1()1((ˆˆ 22 mjmjmmjjjmJJjm    . 
 
Next we analyse the matrix element on left more closely, taking into account that Ĵ  and Ĵ  are 
rising and lowering operators, and use the fullness condition of states jm . After some simple 
algebra we get 
 

jmJjmjmJjmjmJjmjmJjmjmJJjm
m

  ˆ11ˆˆ''ˆˆˆ
'

 

 
( jmJ ˆ    ~   1jm  and 1ˆ  jmJ    ~   jm ). Since Ĵ  and Ĵ  are conjugated to each 
other, we have 
 

mmmm JJ 11 *)ˆ()ˆ(   , 
or 

*)ˆ1(1ˆ jmJjmjmJjm    . 
 
Therefore 

2
1)ˆ(ˆˆ
mmJjmJJjm   , 

which on other hand equals 
 

)1)(()ˆ( 22
1 mjmjJ mm    , 

 



 88 

we get for Ĵ  the following nonzero matrix elements (we choose them to be the real numbers) 
 

)1)(()ˆ( 1 mjmjJ mm    . 
 
The nonzero matrix elements of Ĵ  we find using the relation mmmm JJ 11 *)ˆ()ˆ(    
 

)1)(()ˆ( 1 mjmjJ mm    , 
 
or after changing indices  
 

))(1()ˆ( 1 mjmjJ mm    . 
 
Matrix elements of  xĴ  and yĴ  are calculated from relations 
 

)ˆˆ(
2
1ˆ,)ˆˆ(

2
1ˆ

  JJ
i

JJJJ yx  . 

 
Järgmistes näidetes tuletame operaatorite ilmse maatrikskuju 2/1j  ja 1j  jaoks. 
 
Example 1. j = 1/2. Now 2/1,2/1 m . All matrices are 2x2 square matrices with matrix 
elements labelled as follows 














2/12/12/21/1

2/12/12/21/1

aa
aa

 . 

 
2Ĵ


 and zĴ  were diagonal 
 





















10
01

2
,

4
3

10
01

)1
2
1(

2
1ˆ

2
22 

 zJIJ  . 

 
To find matrix elements of xĴ  and yĴ  we first calculate nonzero matrix elements of Ĵ  and 

Ĵ  , which are 
   2/21/12/12/1 )ˆ(,)ˆ( JJ  , 

and therefore 








 





















0
0

201
10

2
,

01
10

2 i
i

i
JJ yx

  . 

 
In next paragraphs we use these matrices to describe spin 1/2 (electron, for example). We 
introduce a set of matrices ),,( zyx  

  , called Pauli matrices, as follows  
 


















 











10
01

,
0

0
,

01
10

zyx i
i

  . 

Now 




2
J  . 
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Example 2. j = 1. Now m = +1, 0, -1. All matrices are 3x3 matrices 
 























111011

100001

111011

aaa
aaa
aaa

 . 

 
2Ĵ


 and zĴ  are 
 





































100
000
001

,2
100
010
001

)11(1ˆ 222  zJIJ  . 

 
Nonzero matrix elements of Ĵ  and Ĵ  are 
 

2)ˆ(,2)ˆ( 1010    JJ  , 
 

2)ˆ(,2)ˆ( 1001    JJ  . 
Therefore 
 






































00
0

00

2
,

010
101
010

2 i
ii

i
JJ yx

  . 

 
 


