Example. Electron in homogeneous magnetic field. We consider the behaviour of free
electron in homogeneous magnetic field B.

Classical motion is the following. If the velocity is perpenticular to magnetic field (¥ L B),

magnetic Lorentz force F =—eV xB acts as a central force and electron moves on circular
orbit. Since F = evB, the Newton II law gives the relation between the velocity and orbit radius

2
F=eB=M"— - Zzﬁ.
r r M

Next we find the frequency. Since v=2xr/T, where T is
period, we get

v eB
a)L = = — ,
T r M

Which is called the Larmor frequency. Frequency is proportional to magnetic induction.

If the velocity is not perpenticular to magnetic field and has some projection on the direction of
magnetic field v,, trajectory is spiral and particle is moving towards the magnetic field with

constant velocity v, .

Next we treat it using quantum mechanics. Since in microworld there are no trajectories, we
must solve the corresponding Schrodinger equation. As we shall see, it reduces to the equation
of harmonic oscillator.

We assume that magnetic field is oriented in z-axis and homogeneous: B = (0,0, B). Our
problem is most easily solved if we take the following vector potential

A=(0,xB,0) .
General equation is
Hy =Ey ,
where
2 . 2
LNy FRv iy
2M M 2M

and which, using our vector potential, turns to

2 . 2 p2
H:—h A_lethi+eBx2
2M M oy 2M
Therefore we must solve the following Schrédinger equation

2

. 2np2
Ay (x,.2)— lethﬁl//(x,y,z) Le B

Xw(x,y,2)=Ew(x,y,2) .
Y} ;i o 3, y(x,y,2)=Ey(x,y,z)
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Since the z derivative is only in the kinetic energy operator, it is logical to assume, that z-axis
motion 1s uniform with some momentum p_ =%k, and energy E. = (hkz)2 /2M (as in the
classical case). Therefore it is described by exp(ik_z). Also there are no y variables, and we try
to describe the y-axis motion by similar exponent exp(ic y), where a is some unknown real
parameter.

Next we try to find the solution in form
w(x,y,2) =y (x) eV e .
Taking derivatives
_ B Sy(x,y,2) _ (hk)’
2M 0z’ 2M

v(x,y,z)=Ew(x,y,2) ,

W tw(x,y,z ha)’ iehB owy(x,y,z) aehB
H Py e iehB 0y(ra)
XM Oy 2M M oy

xy(x,y,2),

we, after substitution, get the following equation for v (x)

" dw(x) ha’ B
Y, dW(z) w(x )+ 2w (x)+ 0 Yy (x)=¢ey(x),

where ¢ = E — E_ is energy corresponding to the motion on x-y plane.
There are linear and quadratic terms of x, but after the simple change of variables
X - xX'=x+0

and proper choice of d there remains only qyadratic term. Let us take the following three terms
from right. After simple algebra we get

h2a2+heB0¢x+e2B2 2 eB( PPLL hzaz)_esz

ha .,
X )= (x+—)
2M M 2M 2M eB eB 2M eB

. B
and therefore one must choose 6 = h—z . Using the Larmor frequency w, = eﬁ , we have
e

Wa’® heBa B , Mo, ,
+ X+ X’ = x
2M M 2M 2

and our Schrodinger equation reduces to that of harmonic oscillator equation

n’ dl//(x)+Ma)2 x”

oM dr” > y(x')=ey(x') .

(Parameter a finally drops out, and therefore has no physical meaning.)
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Finally we obtained the harmonic oscillations onx’ axis with the Larmor frequency o, . It is

logical and corresponds to the classical case, since the projection of circular motion on some
axis gives us harmonic oscillations. Energy of oscillations is the following

_hoy

g, >

Qn+l), n=0,12,...

Let us analyse the results. Energy in the homogeneous magnetic field is

2
E,(k.) :%(%Hﬁm .

If we omit the free motion, then on the x-y plane the energy is

n

E =By, n=012.
2M

We see that the energy is discrete and therefore quantized. It has interesting physical meaning.

Diamagnetism of electronic gas. Our result explains the new interesting physical phenomenon:
electronic gas is diamagnetic and magnetic moment is diamagnetic.

As we know, any object with the magnetic moment M _ has in magnetic field energy

E =-M_B,
therefore electron itself has magnetic moment

eh
M :—w(2n+l):—y3(2n+l) .

V4

Since it is opposite to magnetic field, we have diamgnetism. Moreover, magnetic moment is
quantized. Magnetical properties of atoms we treat in §25.

14. Gauge invariance

Here we analyse quite interesting problem connected with Schrédinger equation introduced in
the last paragraph:
kg
ot
where

R 1 -
H=——(-ihiV—eAd)* +edp+U .
2M( ) +eg

We know from electrodynamics that potentials are not determined uniquely. We may always
perform gauge transformations and change potentials to the new ones

A > A=A+grad f = A+Vf ,
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b > §= ¢—l.

(These leave the fields E ja B the same). On the other hand, if we choose new potentials,

Schrodinger equation is changed and also its solution is changed. What to do to preserve its
previous physical meaning?

14.1 Gauge invariance of equation. Next we demonstrate, that by choosing new potentials, we
must also change the old wave function ¥ to some bew one W'. That transformation is also
called the gauge transformation.

Next we demonstrate that if we perform the following gauge transformation

ief
Y > ¥'=e"¥,
we get Schrodinger equation

where in Hamilton operator H' there are new potentials A’ ja ¢':
H'= L(—ihv —ed')V +ed +U
2M '

Our gauge transformation is complicated, that now it is cot some constant exponent, but it
depends on coordinates and time, since f = f(#,¢f) depends on coordinates and time. Our

calculations are therefore more complicated. At first we calculate derivatives from ‘V'.

oy g(e%},):i_eaf S Y (ze o

o ot h ot o h 6t )

analogically
ie ie f

V¥ =e” (E(Vf)\P +VY)=e (EVf v

Next we calcutate (—inV —ed")¥':

) s ) ef .
(—ihV —ed)¥' =e " (—ihiV +e(Vf)—ed )Y =e " (—ihV —eA)Y .

(In the last step we used the transformation of vector potential.) Using the last result it is obvious
that
- e -
(—ihV —ed YV =e " (—ihV —eAd)’ ¥ .

Using previous results we from the Schrodinger equation

hai :L(—ihv —ed) WV +ed' V' + UV
ot 2M
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get
ie ie f
v (ih e Ly Z o h (A (i — e+ e(p - Ly L UY) |
et o —eyy=el GV —edy¥+eg—=0 )

which after cancelling exponent and Jf /0t gives us the equation we started with

inY =L(—ihv —ed)’ ¥ +ep ¥V +UY .
o 2M

Therefore, to preserve the invariance of Schrodinger eqation in gauge transformations of
potentials

A > A=A+grad f = A+Vf ,

A
b > P=9-—">

one must transforme the wave function in the following way

ie f(F,0)
Y > Y'=e " V¥

(in all three transformations f = f(7,¢) is the same scalar function). The last transformation is

similarly called gauge transformation. Also the physical meaning is preserved, since the
probability density and probability current density remain the same

wi=pel o F=7

14.2 The general gauge invariance. Quantum mechanics is nonrelativistic, space and time are
not related with each other. One may always perform tranformations

¥ > Y=Y

where o € R is some arbitrary real number, and which are usually called phase transformations
(in wave theories it means the chenge of phase). In relativistic world such transformations are
not allowed since there exist limiting velocity c (the speed of electromagnetic waves in vacuum)
and no information or action cannot move with velocities that exceed c. The constant phase
trasformations mean tha we cheage the phase simultaneously in the whole space, which is from
the relativistic point of view impossible. In relativistic world we may change phase only locally,
in each point in space independently from the other points and also in each moment of time.
Therefore in physics generally are allowed only local phase transformations

¥ - Y=Y,
where

a=a(r,t)

1s some arbitrary scalar function.
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In relativistic physics, especially in particle physics (relativistic quantum field theory), it is the
general principle that any acceptable physical theory must be invariant under local phase
transformations, which ususally are called gauge transformations:

¥ - Y=y

and the field equations which describe some microparticlessuhtes must remain invariant under
the above given trasformations.

It is interesting to note that there are no invariant equation for the field ¥ only, i.e. equations
WY =0,

where W is some function of derivatives. It appears, that these equations are somewhat specific,
because we in addition to ¥ must introduce one (or more) vector fields (A4, ¢ ), which are

analogical to the electromagnetic fields, treated previously. Therefore the equations for physical
fields are in form

W(A,¢)¥=0.

If ¥ describes fundamental particles, for example quarks, then additional vector fields (totally 8
fields) describe particles which describe interactions between quarks. Thay are called gluons.

15. Basics of representations theorie

The formalism of quantum mechanics may be built up using matrices and matrix calculus. The
first formulation of quantum of mechanics (W. Heisenberg, 1925) as we know based on
matrices and is sometimes called the matrix mechanics, after that E. Schrodinger (1926)
introdused wave function and corresponding wave equation (Schrodinger equation) and treated
quantum mechnanics as eigenvalue problem (Schrodinger version was called wave mechanics).
At first glance these theories were so different that it was problematical, whether these two
theories describe the same physics. When E. Schrodinger proves that both theories are
equivalent, it turns out that the Heisenberg quantum mechanics is the mayrix version of
Schrodinger’s “wave” mechanics. Nowadays is Schrodinger version the mostly used one, but
solving problems it is useful to know, how the physical quatities are represented in the matrix
form.

15.1 F-representation. Let us consider some Hermitean operator F and let us assume that we
have solved its eigenvalue problem

ﬁq)n:fnq)n ¢

The matrix repsesentation built up using eigenfuctions of operator F we call the F-
representation.
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To simplify the further calculations we assume that the eigenvalues of F are discrete and there
are infinite number of eigenvalues and eigenfunctions (we also assume that to each eigenvalue
there is only one eigenfunction)

q)]’q)Z""’an :

(The generalization to other cases is in principal simple and needs no special mathematical
tricks.)

Since eigenfunctions of F form a full set of functions, all the functions v from the same class
of functions may be represented as an expansion

v = zci ?; >
i=1

in Dirac notation
|l//> = ;ci |q)i> 5

where ¢, = <(pl. |l//>

It is obvious, that the coefficients c,, ¢, ,..., c, of the series expansion determine function y
uniquely. And vice versa, for each y the coefficients are determined uniquely.

Therefore, proceeding from eigenfunctions of some Hermite operator all functions are

representated by series of coefficients c,,c,,...,c,. We represent functions by one column
matrices

G

)

C =)

c

We call it a F-representation of v .

15.2 Bilinear form. Next we find the matrix representation of two function’s y and y bilinear
form. Assuming that

%:zdi ¢, , or |%>:zdi|¢i> >
i=1 i=1

we get the matrix form ((d;)) of y . Since <)(| = Zdi *<qol. , we get
i=l1
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<%|‘/’>: Zn:di *cj<q0i‘q0j>= Z:ldf e

i,j=1
If we introduce < )(| = y * as a one row matrix
d* d,* ... d ¥,

the matrix product

(d* dy* ... d,*)| 7 |=)d*c

gives a bilinear form (y |y).

As each function v = |l//> is represented as a matrix

its complex conjugate y*= <l//| is represented as a comjugated matrix ((c;))", which is

previous matrix transposed and then each ¢, is replaced by its complex conjugated

(N =N =(a* ex* - ¢, %

Bilinear form is

(xlw)=(d)" () -

Therefore we have

(xlw)=[x*vav  and  (w|x)=[v*xdv=x|y))*.
and also

(@ )* @) =) @) -

15.3 Matrix form of operators. Consider some operator A, which transforms each function v
to some fixed function y

y=Ay .

We demonstrate that it is represented as a matrix product
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d, ayp dpp - 4 | G
dy | 921 At Aoy | O

. - . . . . b
dn auyr dyp 0 Ay \Cy

where 4 is represented as a square matrix ((a;;)) with matrix elements

A

Aqoj>:J.q0,~ *zzlqoj av .

a;; = (o

We start from y = 1211//, Le.
x)=4

v)
and represent y and y by corresponding series

n

n ~
dilpe) =2 c;A C"j> :
I j=1

k=

Multiplying from left with (¢;| and using orthonormality, we may express the matrix elements
of|x): d; (i=1,2,...n), as

A

Since it may be written as a matrix product ((d;))=((a;))((c;)), where operator 4 is

represented as a square matrix

all alz aln
dy; dpp 0 Ay,

. . . . b
Ay Apa 0 Ay

with elements

A

A

aj :<q0,~ qoj>:J.q0,- *zzlqoj dv .

It is obvious that the product of matrices A ja B is represented as a product of corresponding
matrices (prove).

+

If we have the matrix form of some operator A, its conjugated operator has matrix elements a;;

(prove):

+ T
ay =a*; =(a*;)" .

In quantum mechanics the physical quantities are represented with Hermitean matrices.
Hermitean operators satisfy



which means that the elements of corresponding operator satisfy

— *
a =4a; ",
elements on secondary diagonal (i # j ) satisfy
— *
a,=a,

Example 1. 2x2 matrix is Hermitean, if a,,, a,, € R and a,, = a,, *

( a]] a12]
% .
a]2 a22

15.4 Eigenvalue problem. Eigenvalue problem is to solve the equation

A

Ay =ay .
Replacing v by its expansion, we have
A n A
(A-a)y =D e (A-a)|p;) =0 .
k=1
Multiplying from left to <(p,- |
n n n
2 ci{pil(4-a)|or) = 2 ex(ay —ady) =0,
k=1

k=1
we write it as

n
D (ay —ady)e, =0 .
k=1

It is the linear homogeneous system for c,

dip—a  dap Tt i €
ar dy —a oy G| 0
an apo Ay —A NG,

That system has nontrivial solutions iff the determinant is equal to zero
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a1 Ayp 0 4
(the shorthand of it is det((a; —ad;))=0).
Determinant gives us the following n-th degree equation

-D"a" +aa" ¥ ... +a, =0,

where a,,a,,...,, are some numerical coefficients. In general such equations have n

n
solutions
a,ay,....a, ,

which now are the eigenvalues of operator A.

In order to calculate eigenfunctions of A we must replace a, and solve the equation finding

i
ne

coefficients c|, c} ,...,c

Example 2. Operator given by arbitrary 2x2 matrix:

Eigenvalues are calculated fron equation

app—a aip

‘ =(a;; —a)(ay —a)—appay =0 .
dpp  axp—d

Since it is a quadratic equation
2
a” —(ay +ay)a+(ajay —apa) =0,

it gives two solutions

ap +anxp ayptax 2
an ZTi\/(T) —(ayayp —apay) =
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2
_ay tay +\/(a11 —a)” +4apay
2 2

To find eigenfunctions we replace a, and then a,, and find the corresponding c,. Replacing,

for example a,, we must solve the system

(@, —a)c +ape, =0,

ayc +(ay —a)e, =0.

(In such systems one of coefficients is always arbitrary. If we take ¢, as known, ¢, is
represented as

Example 3. 2x2 Hermitean matrix. Now the matrix is

( any alz]
* b
ajp az

where a,,, a,, € R. Solutions of corresponding quadratic equation are

2 2
_aytay +\/(“11 —ay)” +4ap,|

a T
1.2 2 2

As we see, eigenvalues are real numbers.

Example 4. Pauli matrix o,

Now a,, =a,, =0, a;, =—i, a;,* =1, therefore eigenvalues are
11 22 12 12

2

’ 2

=+1.
Nxt we find eigenfunctions. For a, = +1 we must solve equation

e

or



We have only one independent equation. If we take ¢, =1, we get ¢, =i and therefore the
corresponding eigenfunction is
1
Vi=|.1-
i

well)

15.5 Operator F in F-representation. Operator F itself is represented as a diaginal mtarix
and its diagonal elements are its eigenvalues. Indeed

Similarly we for a, = -1 get

i =0ilFlo;) = 1;{0i|0;) = 1,55 -

15.6 Connection between different representations. If we use F-repsesentation, we use as
basis eigenfunctions ¢;, ¢, ., ..., ®, (1:“ ©; = f;9;) of operator F . In the G-representation we
similarly use eigenfunctions

"4 ’WZ""’Wn

of operator G . Let us take some arbitrary function y . Its F- and G-representations are

n n
Z:zci% - |Z>:zci|¢i> )
i=1 i=1

n n
Z:zdi% - |Z>:zdi|l//i> :
i=l i=l
Since

Zn:dj “//,-> = Zn:ck|q’k> :
Jj=1 k=1

Multiplying from left to <l//l.| and using orthonormality, we get the relation between the

coefficients in different representations

n
d; = z<l//i |C0k>ck .
k=1
In the matrix form
(@) =U;)c;)),
where the matrix elements of transition matrix U are
Ulj/ = <V/i ‘¢.j> = J.l//i *60./ dv .

It is easy to prove (prove it) that matrix U is unitary:

Utr=u-! ehk UU=1.
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Example 5. Harmonic oscillator in E-representation. E-representation means that we use
eigenfunctions of Hamilton operator /. We have

E, =ho(n+1/2) ,

and
Mo*x?
- Mo
v,(x)=4e * H,/( TX) ,
n=0,1, 2, .... Using integrals, calculated previously we write down some operators in matrix
form.

Since n =0, 1, 2, ... we label the matrix elements of operator A as follows (matrices are infinite
square matrices)

dop  do1 Aoz

(@) =| 10

ap 4app

Hamilton operator H is diagonal, matrix elements are energy eigenvalues, therefore

h, =EG, =ho(n+1/2)s

mn

or in matrix form

1 0 0
w0 3 O
((hmn )) = 5

210 0

Next the coordinate operator x = x . Its matrix elements are

xmn = <l//m |x|l//n> = J.l//mxv/n dx :

Using the corresponding integrals (see §7), we obtain

| h —
Xmn = M( n+15mn+l +\/;5mn—l)’

0 J1 0
[ n N0 2
((xmn))_ M 0 \/5 0

or in matrix form

A ) .
Momentum operator p = —ih = Its matrix elements are
x
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v,)=—ih f v, oy .

. d
Pon __lh<l//m|d dx

dx
Using integrals, we obtain
L Mo  ——
Pmn = in E( n+l 5mn+1 _\/;5mn—l ) >

or in matrix form

0 -1 0
. [Meon|V1 0 -2
((Pn)) =1 2 1o vz o

Using matrices it is possible to perform calsulations. For example, if it is needed to prove that
[x, p ] =ih, we first calculate (xp),,, and (px),,,, using the above given matrices and that gives us
the final result

(xp — px) y =105, .

Some results are more easily calculated using matrices. If we, for example try to find matrix
elements of x? , it means calculation of matrix elements (x2 )mn » Which in turn means that one
must multiply two x-matrices

2 —
(x )mn - zxmrxm :
r
Since x,,, has nonzero elements when n = m 1, we conclusion obtain

D) = e (@m 418y + (1) 8,y 5+ + DY+ 2) S

2M @

(Compare it with the results of §7, obtained by integration.)

We give also the natrix elements of x> L Itis product of x? and x, therefore
3 2
(x )mn = Z(X )mpxpn .
p

Nex we give only nonzero elements

)t = ) (Dt + (s (V) p2n =3J(Miw>3 \/(g y

h ~)(n-2
(x3)nn—3 = (xz)nn—Z (X) 243 = \/( Ma))3 \/n(n lf)g(n ) )
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h
(x3)mz+1 = (xz)mz(x)mzﬂ +(x2)mz+2(x)n+2n+l = 3\/( MCO)3 \/(n;1)3 >

h 3 2 1
(x3)mz+3 :(xz)nn+2(x)n+2n+3 :\/(Ma))3 \/(n+ )(n;— )n+1) .

(x* is symmetrical matrix, for example (x*) _ =(x*),, andso on.)

nn—l

16. Matrix representation of angular momentum

Assume that we have three Hermitean operators

Jeidy,

A

which satisfy similar commutation relations as operators of orbital angular momentum ﬁx, L

and iz (see §9)

¥

It is easy to verity (prove), that

[JZ,J;}:[JZ,J;HJZ,J;}O.

16.1 Eigenvalue problem. Similarly as for orbital angular momentum we may find the square
and one projection (we choose again the z-projection). Therefore we start to solve eigenvalue
problems

T2\ jm) =002 jm)y, J.

jm> = hm|jm> .

A

and try to find J and m, and also the matrix form of operators jx ., ,J . | jm> are matrix
elements of corresponding states.

It is natural to use the representation where operators J> and J . are diagonal matrices (the J-
representation or angular momentum representation). We assume similarly to the orbital angular
momentum that in the sub-space where J? is fixed the only variable is eigenvalue m of operator

J. . Then the matrix elements of J> are
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(jz)m'm = <me|j2|Jm> = hz']zé‘m'm
and similarly for J .
(jz)m'm = <]m'|'}z|]m> = hm(sm'm .

Matrixelements of J . are labelled by m and we assume that the possible values of m are

m ,m,,...,m

roo

where m, = max(m,) is maximal and m_ = min(m,) the lowest one.

16.2 Restrictions to projections of J . . Proceeding from
= T+Jl 4!

we calculate diagonal element of both sides

J?

72 72
J; J;

(jm|72|jm) = (jm| 72| jm) + |72 )+ jm| T jm)

which is expressed as
hz']z = (J)%)mm +(J)2/)mm +h2m2 .
From the above given it follows that
hJ? > him? or JPzm® .

unatities (J> and (J 2 are nonnegative. For example
x / mm y g p

~ ~ ~ 2
D) = (2| = 3l |

m' m

1

va><]m'|jx|‘]m> :z(‘}x)mm' (‘}x)m'm = Z‘(jx)m'm

In the last step we used that J . 1s Hermitean.)

From unequality J> >m* we get the following restrictions to m:

Jzm,my,...,m,.2—J .

16.3 Rising and lowering operators. Next we introduse operators which rise or lower
eigenvalues of J . . For that we instead of J L Ja J , the following operators

Jo=Jd+id, , J.=J.-iJ,,
which satisfy (J,)" =J_,(J.) =J, .

Now we find the following commutation relations
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It is easy to verify that operator J . rises eigenvalues of J . by+1

A

J,

jm) ~ |jm+1)

and operator J_ lowers eigenvalues of J . by-1

A

J

jm> ~ |jm—l> .

We prove only the first relation. Using [j s J . J =hJ . » which we write as

JJ, =JJ. +n]

+

and applying it to | jm> , we get

J (T, jm)) = J (J.| jm)+ (.| jm)) = h(m+1)(J.| jm)) .

We see that indeed J +| jm> is the eigenfuntion of J . with eigenvalue A(m +1).

16.4 Eigenvalues. Next we analyse the general structure of eigenvalues m. Let proceed from
the state with maximal projection

[jm,) -

Since the other values of m are smaller, we have

A

J, jm]>:0 .

Applying step by step the lowering operator, we get

A

J

jmy) ~ |jm, -1)

(J_)|jm) ~ |jm, —2)

(j_ )r—]

jm]> ~ |jm, —(r—1)> .
Therefore the possible values of m are

m,m—=1,m-=2,....,m—(r-1).
Taking on the other hand the state with minimal projection

[jm.)
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we have J _| jmr> =0 . Applying step by step the rising operator, we get

A

J,|jm,) ~ |jm, +1)

(J.)|jm,) ~ |jm, +2)

jmr> ~ |jmr+(r—1)>.

)"

It means that the possible values of m are
m +@r=1,....m +2,m +1,m,

We see that m, =m_ +(r —1) , but in ordes to determine eigenvalues we must separately find

m, or m, .
Next we derive the relation between m, or m. from which the exact eigenvalues are calculated

We start from
22 A2 52 82
Jo=J+J

and express it in the following two different ways. Using the products of rising and lowering

operators j+j_ :jf +j§ +h.}z and j_j+ :jf +j§ —hjz , we have

JE=J J, +J2+nJ_,

At first we apply the first relation to the state with maximal projection | jm]>

]m1>+.}22|]m1>+h.}z|]m1> .

72| jmy) = J_J,

jm,> = hml|jm,>, we get

Since j+|jm1> =0 and jz

T2 jmy) = h2my (my + 1) jmy)
from which
J2 :ml(ml +1) .

Applying similarly the second expression to the state with the lowest projection| jm,) and using

A

J jmr>:0,weget

J? =m,(m, —1) .

Since both give the same result, we have
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JP=m(m +)=m (m, —1) .
If we solve our quadratic equation for m, , we get

m=m,.—-1 ja m =-m,

The first solution do not match, since m, was the lowest one, therefore we have
=—-my .
Finally we fing the general solution to our eigenvalue problems. Denoting
m =j,
we get
JP =+
and the following values of m

Joj—l...,j-(r-1)=—j.

From these we see that the only possible values of j are
1 3
=0,—,1,—,2,...
/ 20 2

(after n steps we must from j reachto — j, which means that j —n=—; and j=n/2).

In conclusion the values of j are integers or half odd integers. The projection quantum number
m has for given j r =2j+1 possible values

m=j,j-1,....,—(j=-1),—j.
Our eigenvalue problems, we started, are now written as
| jm)=1j(j+ )| jm),  J.|jm)=hm|jm) .

Since our proof was general, since we used only general commutation relations of operators, our
result is also general. It means that the only allowed values for j are

13
=0,-.1.2,2,.....
RN

For angular momentum there were only integer values / = j =0, 1, 2,... allowed, but in physics

there are physical objects, which angular momentum is equal to some half odd integer. Next we
see that electron has intrinsic angular momentum, called spin, which has value s =j = 1/2).

16.5 Matrix form of operators. Next we derive tha matrix form of J_ and J , - Since J? and

J . were diagonal (27 +1)x (2 +1) square matrices, matrices J . and J , are not diagonal.
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At first we derive matrix elements of J . Jja J_, since it is simpler. We start from

A

o vironl
and calculate the following matrix element < jm’|j 2 | jm> for J*>

(| | jm) = (73| jm) + 12 =1 o jom)
which is written as
12 G A1) 8 = ([T T _| ) + B m(m —1) 8,y -
At first we see, that in the case of m'# m we have
('] T | jm) =0,
and for that reason we consider the case m'=m

n2 (i + )= (jm|J J_| jm)+m*m(m-1) .
It gives
(jm|J J_| jm)=10* (j(j+1)=m(m—1)) = > (j+m)(j +1-m) .

Next we analyse the matrix element on left more closely, taking into account that J . and J_ are
rising and lowering operators, and use the fullness condition of states | jm> . After some simple
algebra we get

J.

JJ J) | jm) = {jm|J | jom = 1) o =1} jm)

(jm

jm) =2 (im

(j_|jm> ~ |jm—l> and j+|jm—l> ~ |jm>). Since j+ and J are conjugated to each
other, we have

(j+)mm—1 = (j—) *m—lm >
or

<jm|j+|jm—l>:(<jm—l|.}_|jm>)* .
Therefore

2

XA . 2
(jm|JT ] jm) =Tt
which on other hand equals

A 2 9. .
o] =12 GHm)G+1=m)
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we get for J_ the following nonzero matrix elements (we choose them to be the real numbers)

(T Y tm =1 G +m)(j +1=m) .

The nonzero matrix elements of J, we find using the relation (J. ) -1 =(J_)*,,.1m

(j+)mm—1 = h\/(] + m)(] +1- m) )

or after changing indices

(j+)m+1m = h\/(] +m+ 1)(] - m) .
Matrix elements of .J_ and J , are calculated from relations

S 5 1~ =
JXZE(J++J_), Jyzz—l_(J+—J_) .
Jargmistes niidetes tuletame operaatorite ilmse maatrikskuju j =1/2 ja j =1 jaoks.

Example 1. j = 1/2. Now m=+1/2,—1/2. All matrices are 2x2 square matrices with matrix
elements labelled as follows
(al/Zl/Z Ay2-1/2 ]
Ay212 Ayj2-12 .

J? and J_ were diagonal

. 1 0 2 1 0
J2=h21(1+1) :il, Jzzﬁ .
22 lo 1) 4 210 -1

To find matrix elements of J and J , we first calculate nonzero matrix elements of J, and

j_ , which are
I ya1=h, () ymp=h,

0 1 0 1 0 —i
Jx:E > Jy:i :E . l .
211 0 2i\-1 0 YA )

In next paragraphs we use these matrices to describe spin 1/2 (electron, for example). We
introduce a set of matrices 6 = (o, o 150, ) , called Pauli matrices, as follows

(01 (0 - (10
%= o) 7 o) %7 o -1

and therefore

Now



Example 2. j=1. Now m =+1, 0, -1. All matrices are 3x3 matrices

ay d,y a
J? and J, are
I 00
JE=r?10+10 1 0|=2n%1,
0 0 1

Nonzero matrix elements of J, and J_are

Uw=m2 .,  (J)gq=m2,
o =12 . () =2 .

Therefore

y ot
2

oS = O
—_— O
oS = O
<
Il
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