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10. H-atom in quantum mechanics 
 
 
 
10.1 Central symmetric field. Consider at first the central symmetric potential energy 
 

)(rUU   . 
 
The corresponding Schrödinger equation is 
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Since the potential energy depends on radial variable only, it is useful to use spherical 
coordinates. Laplace operator in spherical coordinates is  
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Dependence on angles is expressed with the help of angular momentum operator.. 
 
Schrödinger equation in spherical coordinates is 
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It is easy to verify, that 
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From the last expression it follows that we have two conserved quantities: energy and angular 
momentum (of course in addition also the projection of angular momentum is concerved) In 
classical physics the situation is similar: there are two conserved quantities – energy and angular 
momentum. 
 
10.2 General form of solution. Since the angular momentum is conserved, we try to find the 
solution in the following general form 
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Since lmlm YllYL )1(ˆ 22  


 , we after substitution obtain the differential equation for the radial 
part of solution )(rR  
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It is the general form which is used for every U(r).  
 
 
10.3 H-atom in quantum mechanics. In hydrogen atom electron has the following potential 
energy 
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Coulomb potential energy (here we use the SI-system and for simlicity denote b = 04/1  ). 
Similarly one can treat the more general case – hydrogen like atoms – where the charge of 
nucleous is Ze and there is only one electron moving around it. Then the potential energy is 

r
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)(   . Since the results for latter case are obtained substituting 22 Zee  , we treat 

the hydrogen atom case only. 
 
Differential equation for the radial part 
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Since we are interested on the electronic states in hydrogen atom, we choose the total energy to 
be negative: E < 0. Positive energy case we treat later. 
 
In solving the given differential equation we must follow similar steps, as in the case of harmonic 
oscillator: we change variables, find assymptotical solutions and then use the power series 
expansion. 
 
If E < 0, we define the following variable and constants 
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and our differential equation is 
 

0)()1(
4
12

22

2












 
 





lRll

d
d

d
d  . 

 



R.-K. Loide Kvantmehaanika 54 

(We added two indices λ and l, because the radial part depends from orbital quantum number and 
also from λ.) Since  0 , we must analyse tha cases   and 0 . For    we 
obtain the following equation 
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Special solutions are 
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The assymptotical solution for   is, of course 
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Next we try to find soluttion in form 
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where we choose s , demanding that the solution behaves normally, if 0  and )(lL  is 
power series function 
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Substituting )(lR  we get the differential equation 
 

0))1()1()1(())1(2(2

2
2  Lllsss

d
dLs

d
Ld







  . 

 
We see that when 0  ,the following expression must be equal to zero 
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We have two solutions 
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The second solution is not applicable (it is negative) and we must take ls  . Our equation is 
simplified 
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Substituting the power series function, we get  
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As in the previous cases, the power sireie must be finite (infinite serie behaves as e ). Assuming 
that the power series function is polynomial and 
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00 1  pp ajaa  , 

we get 
 

...,3,2,1,1  nwherenlp  . 
 
New quantum number n, is called principal quantum number and it determiner energy in 
hydrogen atom. 
 
Since p = 0, 1, 2, …, we from the definition of principal quantum number get the following 
restrictions to possible values of angular quantum number 
 

nl 1  . 
 
Therefore, for a given n , orbital quantum number has values  l = 0, 1, 2, …, n - 1. 
 
10.4 Energy levels in hydrogen atom. From the definition of   we have 
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and since n , we get the energy values 
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Using Rydbergi constant 
116

3

42
1007,2

2
 seMbR


 , 

 
energy is expressed as 
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Later we see that the next important constant is Bohr radius 
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(in Bohr’s theory it is the radius of the first stationary orbit). 
 
10.5 Eigenfunctions. The radial part of eigenfunstions  
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which satisfy 
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and are called Laquerre’i polynomials. )(nlR  is polymial ending on power 1n . 
 
Normalization of radial functions we introduce tha normalization coefficient 
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Since the spherical functions were normalized, we for the radial part get  
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and therefore nlN  is obtained from 
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Here we do not perform the calculations and give only the final result  
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Next we write down radial functions for the lower states in hydrogen atom ( n = 1, 2, 3 ) 
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Radial functions which are nonzero values at 0r  are 
3
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10.6 Radial probability density. Radial 
probability (r, r+dr) 
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gives for probability density 
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A analyse the probability distribution for the 

ground state 1s (n = 1, l = 0). Probability maximum correspond to the Bohr radius. 
 
The following graphs represent radial 
probability distributions for some lower 
laying energy levels : n ja l values are 10, 20, 
21, 30, 31, 32, etc). Distance unit on these 
graphs is Bohr radius. Vertical axis represents 
probability density. 
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Comments: 
 
1. For the hydrogen-like atoms one must do the change 22 Zee  , which in turn means, that in 

eigenfunctions Bohr radius 2

2

0 Mbe
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2. Mean values of 1r  , 2r  and 3r  . In § 29 we need the mean values of 1r  , 2r  and 3r  . 
These are 
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3. Positive total energy. We shortly deal with the E > 0 and demonstrate that energy is 
continuous, and electron and proton do not form a connested system (atom), since electron may 
move to infinity. 
 
For  E > 0 we introduce new variable and new constant 
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which give the following equation for the radial part 
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For   it gives 

0
4
1

2

2
 R

d
Rd


 . 

 
The general asymptotical solution is 
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Since it is finite for every E the energy is not restricted may have arbitrary nonnegative values. 
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11. Energy levels of atoms 
 
 
In hydrogen atom energy depends only from the principal quantum number n . To each energy 
level nE  there are 2n  different states: 
 

1,,1,0,),()(),,(,  nlYrRrE lmnlnlmn   . 
 
It appears that energy depends on pricipal number only for Coulomb potential energy (potential 
energy is reciprocal to distance r). For other atoms, since there are more electrons, electron 
potential energy is different from the Coulomb one, energy depends on two two quantum 
numbers – pricipal and orbital quantum numbers. As the first approximation, we assume that the 
potential energy is central symmetric  ( )(rUU  , therefore energy and states have the following 
general form 

),()(),,(,  lmnlnlmnl YrRrE   . 
 
For a given n  we similarly have 1,,1,0  nl   , but for each l  the energy value is different 
and increasing with l. 
 
There is no general proof that nlEE  , but as we see later if explains the pariodic properties of 
atoms. Here we treat one specific example which demonstrates that if the Coulomb potential is 
modified (dipole approximation) energy also depends on orbital quantum number. We take the 
following potential energy 
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where d  is some constant and assume that the second term is very small compared with the first 
one. Since 
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we analyse only the radial part nlR  , which must satisfy 
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Next we use the following trick: we try to write the above given equation in similar form, as it 
was in the hydrogen atom case. For that we write 2/1 r  terms in the following form 
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Next, 'l  is expressed via l  . Solving the quadratic equation, we get 
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We take the + sign ( 'l  similarly to l  is nonnegative). Assuming that the dipole term is small, we 
may write 
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and get the final result 
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We write it more shortly 
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The equation for radial part via 'l  is 
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In the hydrogen atom case we had the same equation, except that instead of  l’ there was orbital 
quantum number l. Since in hydrogen case we obtained energy 
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then now we had similarly 
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But now the quantum number n* depends from the principal quantum number also from the 
orbital quantum number 
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and so does energyl 
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From the expression for l  we see that energy increases with l  . 
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The above given simple example qualitatively explains the general structure of valence electron 
energy levels in alkali-metals (Li, K, Na, ...) . Lithium ( Li3 ) has three electrons, two which fill 
the K-shell, but the third one is on the outher L-shell. The ground state of the third electron is 
therefore 2s and its excited states are 2p, 3s, 3p, 3d . The corresponding energy levels from our 
dipole approximation model are shown in the following figure (dotted line gives energies 
corresponding to the Coulomb potential energy).  
 
 
 
 
 
 
 
 
 
 
 
 
Such level structure qualitatively explains the spectral lines of alcali-metals. 
 
 
Periodic table. Energy dependence nlE  allows to explain the periodic table of chemical 
elements. It is based on two principles: 1. Pauli exclusion principle, which states that each  
quantum state ( mln ,, ) may be occupied as maximum by two electron (and differ by spin 
projection σ (which we discuss later)); 2. In ground state energy is minimal. It means that 
electrons occupy the possible energy levels step by step, starting from the minimal energy. 
 
To nlE  there corresponds 12 l  states nlm . Since the spin projection doubles the number of 
states, the total number of states is )12(2 l . Maximal number of elektrons on nlE  is therefore 
also )12(2 l  and is determined by the orbital quantum number l . These states are also denoted 
by letters s, p, d, f, ... (whic correspond to ,3,2,1,0l  ). Therefore we have: 
 

2maxlevels   electrons, 
 

6maxlevelp   electrons, 
 

10maxleveld   electrons, 
 

14maxlevelf   electrons. 
 
Electrons in atoms form electron shells, inside one shell difference between levels is small, but 
energy difference between shells are much greater. Each shell starts from some ns  level and 
ends with np . The general strcture of shells is the following. 
 

elektronssshellK 21  
 

elektronspsshellL 82,2  
 

elektronspsshellM 83,3  
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elektronspdsshellN 184,3,4  

 
elektronspdsshellO 185,4,5  

 
elektronspfdsshellP 326,4,5,6  

 

elektronspfdsshellQ 327,5,6,7 . 
 
Of course in each atom the energies are different. For example energy of 2s level in Lithium 
differs from that one in Boron, and so on. 
 

 
 
 
 
 

12. Atomar currents 
 
 
In central symmetric field )(rU  elektron’s energy depens on two quantum numbers n and l, 
elektron’s state from three quantum numbers n, l ja m 
 

 im
lmnllmnlnlmnl ePrRYrRrEE )()(),()(),,(,   . 

 
From each elektron the exact value of energy depends on concrete form of )(rU , and similarly 
radial part )(rRnl , but the general structure of wave function is always ),,(  rnlm  

 im
lmnl ePrR )()(  (and we always choose )(rRnl  and )(lmP  to be real valued functions). 
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Next we analyse the magnetic properties of electrons „ moving“ 
in atoms. In classical physics one can find magnetic moment for 
electron moving on circular orbit in central symmetri field. 
Since the moving electron is at the same time electrical current, 
it has some magnetic moment which is expressed as 
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Since it depends on angular momentum, it is natural to assume that also in the microworld 
electrons have magnetic moments depending on their orbital quantum numbers. Next we prove 
that similar expression is also valid in quantum mechanics, but we must replace the physical 
quantities by its operators.  
 
Electron current density equals the probability current density multiplied to charge q = -e 
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We calculate its components in spherical coordinates, where the components of gradient are 
 

  











sin
1,1,

rrrr  . 

 
Simple calcultion gives that the only nonzero component is the 
axial one 
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Next we calculate the magnetic moment. At first we consider the 
axial current pipe having its cross section area d . Current in 
pipe 
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Its magnetic moment is 
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The total magnetic moment is sum over all possible current pipes, which is integral  
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(  drdV sin2  is a volume of current pipe and wave function is normed). 
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Therefore electron’s magnetic moment in a state (n, l, m) is 
 

mm
M

e
Bz  

2
  , 

 

where MeB 2/  is Bohr magneton ( TJB /1023,9 24 ). z  depends on the projection 
of angular momentum and for that reason the quantum number m is called magnetic quantum 
number. 
 
Since mLz  , we have 
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In operator form it is written as 
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or more generally 
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Electron has also intrinsic angular momentum – spin and intrinsic magnetic moment. The role of 
spin and its magnetic moment we treat later. 
 
 
 
 

13. Schrödinger equation (external electromagnetic field) 
 
 
We started with Schrödinger equation 
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where the Hamilton operator is 
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It is applicable in the case of classical nonrelativistic conservative force field. In order to apply it 
in the case of external electromagnetic field we next modify it. 
 
13.1 Electric and magnetic fields, potentials. Electric and magnetic fields are charactericized 
by two vectors 
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 , 
 
which on the other hand are described by two potentials A


 and  , whereas 
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In Schrödinger equation we use potential functions and therefore the Schrödinger equation is 
modified using the following substitutions (q is elctrical charge of particle) 
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We obtain the following  
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Usually it is written in “traditional” form 
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Where the Hamilton operator in the presence of external electromagnetic field is the following 
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In the last equality we denoted the sum of potential energies simply by U’ (later we omit prim, 
but remember that it is sum of classical mechanical potential energy and electrostatical potential 
energy). 
 
13.2 Minimal replacement. Usually the above given replacement is called minimal 
replacement, since it is the simplest possibility to introduce external field. What is the physicsl 
meaning of our replacement. We start with 
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 ˆˆ  . 
 
From electrodynamics we know that if we conside a system of charged particles and eletric and 
magnetic fields, we must take into consideration momentum and energy of particles and also 
momnetum and energy of field, in other words we consider the total momentum and total 
energy. Total momentum is the sum 
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  . 
 
( Aq


 is momentum of field). Since Schrödinger equation describes particles in external field, the 
must be momentum of paticles described, which means that the momentum operator is 
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(now the operator of total momentum is  i ). 
 
13.3 Hamilton operator. If we express the square of momentum, we get 
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Of course our new equation is quite complicated, concerning especially the vector potential 
terms. In electrodynamics different restrictions on potentials (gauges) are used. In the case of 
static fields the gauge 0Adiv


 is mostly used. In the weak fields usually the term with vector 

potential square, as small, is also omitted. 
 
In the following we mostly assume that 0Adiv


. The Hamilton operator is 
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is the “standard” Hamiltonian operator, we used previously, and 
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is the part depending on vector potential. 
 
Probability density current is (prove) 
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13.4 Elektron Hamiltonian operator for external homogeneous magnetic field. In our 
quantum mechanics course we mostly analyse electrons in atoms and external fields, therefore 
the electric charge in our equations is eq  . External field in atoms is practically 
homogeneous and therefore we mostly treat external fields, acting on electrons in atoms as 
homogeneous. 
 
Next we assume that external homogeneous magnetic field is directed towards the z-axis. 
Therefore the magnetic field (magnetic induction) is 
 

),0,0( BB 


 . 
 
That field is decribed with the help of different vector potentials. We use mostly the following 
three ones 
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(Prove that they all satisfy 0Adiv


 and give the same magnetic field). Which of them to use 

depends on problem we had to solve. 
 
Using the first vector potential we calculate  Ai


 : 

 

)(
2

)(
y

x
x

yBi
y

A
x

AiAi yx 




















  . 

 
Since )//(ˆ xyyxiLz   , we can write it as 
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Since 4/)( 2222 yxBA 


, we get the following Hamikton operator for electrons in 

homogeneous magnetic field 
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We use it in paragraphs 24,25. As we see, our equation takes into consideration electron’s orbital 
magnetic moment, since 
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Electron has due to its spin also intrinsic magnetic moment s

 , and we in paragraph 18 
introduce electron spin and once more modify our equation to take into account also intrinsic 
magnetic moment. 
 


