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5. Potential well 
 
 
5.1 Infinite potential well.  At first we deal with case 0U  (infinite well). In that case we 
have 0 IIIII   and particles may move only in region, where U = 0. It is the free particle 
case and the general solution is 

 
ikxikx

I eBeAx )(  . 
where 



MEk 2
  . 

 
Initial conditions are 0)()0(  aII   and we get 
 

0,0   ikaika eBeABA  . 
 
From the first one B = - A and after substitutio to the 

second one we have 
0)sin(2)(   kaiAeeA ikaika  . 

 
Since A ≠ 0 (otherwise 0I  and there are no particles at all), we have 
 

0)sin( ka   
from which 
 

,3,2,1,  nnka   . 
 

(n = 0 is not allowed, since it gives k = 0 and 0I ). 
Substituting k we obtain that the energy in infinite well is 
discrete 
 


 ,2,1,

2
)(

2
2

2

222

 nn
MaM

kEn
  . 

 
(In classical well energy is continuous  E0 .) 
 
Orthonormed wave functions are 
 

a
xn

a
xn

 sin2)(   . 

 
Lowest energies and corresponding probability distribu-
tion: 
 

a
x

aMa
E  22

12

2

1 sin2,
2

)(


  , 
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a
x

a
EE  2sin2,4 22

212   ;      
a

x
a

EE  3sin2,9 22
313   . 

 
 
5.2 Finite potential well. We deal with the following potential energy  

 









.,0,

,0,0

0 axxU
ax

U  

 
and assume that E <Uo . 
 
Comparing with 0U  case, we are faced with 
coplicated problem, since wave functions in regions II 
and III are nonzero. It appears that we have no analytical 
solution at all.  
 

General solutions for different regions are 
 

ikxikx
I eBeAx )(  ,    x

III
x

II eDxeCx    )(,)(  . 
 
Continuity condions for x = 0 and x = a give 
 

CBAkiCBA  )(  
 

aikaikaaikaika eDBeAeikeDBeeA     )(  . 
 
We eliminate C and D, then it reduces to the system for A and B  
 

)()( BakiBA   
 

)()( akiakiakiaki eBeAkieBeA    . 
 
That system has nontrivial solutionf if the determinant is equal to zero. Writing it as 
 

0)()(  BkiAki   
 

0)()(   BkieAkie akiaki   , 
we must demand that  
 

0
)()(





 kiekie
kiki

akiaki 


, 

whic gives 
0)()( 22   akiaki ekieki   . 

 
Real part of above given relation is authomatically zero. For the imaginary part we have  
 

0cos2sin)( 22  kakakk   , 
 
which is written as 
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0cot2)( 22  kakk   
or 

22

2tan






k
kka  . 

 
Using the expressions of k  and   it may be written as 
 

0

0

2
)(22tan

UE
EUEMEa














 . 

 
It is obvious, that the last equation is not solvable analytically. It can be solved numerically or 
graphically. 
 
We shortly consider how to solve the problem graphically. At first we solve the equation  
 

0cot2)( 22  kakk   
for   

2
cot,

2
tan kakkak    . 

 
Next we draw the graphs of both functions using k  coordinate frame and use the relation 
between   and k   

2
022 2



UMk   . 
 

It is a circle in k  frame with radius /2 0UMr   . The common points correspond to 
possible energy values: we find the values of k (or κ) and calculate E. 
 
 

 
On figures we see that inside the well there is always finite number of possible energy states 
(minimum is 1 state) and it depends how large 0U  is. In our case thare is three energy levels. 
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 6. Harmonic oscillator 
 
 
In classical physics if we consider the parabolic potential energy (parabolic potential well) U = 
kx2/2 (elastic force F = - kx ) we get harmonic oscillations. Frequency is equal to k/M =  , 
where M is the mass of oscillating body. Energy of oscillations is continuous. 
 
Every body oscillating harmonically is called harmonic oscillator. Harmonic oscillator has 
several applications (small oscillations in twoatomic molecule, in crystal atoms oscillate  and so 
on). In microworld the behaviour of harmonic oscillator is quite different from the classical one: 
energy is discrete and the probability disribution is different from the classical one. Next we 
prove it solving the corresponding Schrödinger equation. As we see, it is quite complicated 
procedure, since the differential equation we have is different the ones used in classical physics. 
 
Let us consider the following potential energy 
 

.
2

)(
22 xMxU 

  

 
Next we must solve the following Schrödinger equation 
 

)()(
2

)(
2

22

2

22

xExxM
dx

xd
M




  . 

 
6.1 Change of variables. We give the detailed solution, since it has several steps. The first one 
is to change variables and write the equation with less constants. In our case we define 
 









ExM 2,    

and write our equation as 
 

)()()( 2
2

2






d

d      or     )()()( 2    . 

 
6.2 Asymptotical solution. Since the variable is not restricted we must find out whether there 
exist finite solutions if the variables tend to infinity. If  , we demand that 0)(  . 
 
If   , we have 0)()( 2   . It is possible to verify that now the possible 
approximate solution which tends to zero is 

2

2

)(





 e  . 
 
Similarly the solution is also )2/exp( 2 , but it is unphysical since it infinitely increases.  
 
6.3 Power series. Having asymptotical solution we next try to find the general solution in form 

2

2

)()(





 e  , 
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where )(  is a new function we must find. Substituting the above given solution to our 
Scrödinger equation we for )(  the following differential equation 
 

0)1(2    . 
 
Next we assume, that )(  is expressed as a following power series function 
 





0

)(
r

r
ra   . 

 
Whether the serie is finite or infinite, we analyse later. Calculating derivatives 
 





0

1)(
r

r
rra   

and 







 
0

2
0

2 )1)(2()1()(
s

s
s

r

r
r assarr   , 

(we changed r to s = r-2). After substitution to our differential equation, we get 
 

  
  

 
0 0 0

2 0)1(2)1)(2(
r r r

r
r

r
r

r
r araarr   . 

 
Taking the term before r  equal to zero, we have 
 

rr a
rr

ra
)1)(2(

12
2 




  . 

 
We got the formula to calculate the coefficients ra . One of the solutions is the even series 
function 

00 10  ajaa  , 
and other the even series function 

00 01  ajaa  . 
 
Now we analyse the large   behaviour of )( . When   we see that )( , since it 

has identical limiting behavior with 
2e . For large   we have 

 

ra
a

r

r 22   , 

which is the same as for 
2e  . 

 
Therefore at large values of   

2
)(  e   

 

and 2

2

)()(





 e  is not finite. Therefore the power series function must be finite. It means 
that serie terminates on some value n (we have polynomials) 
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00 2  nn ajaa  . 

 

From 0
)1)(2(

12
2 




 nn a
nn

na   we get that 

 
...),2,1,0(,12  nn . 

 
We got the first important result: to avoid infinities the parameter   must be discrete and have 
the above given values. 
 
6.4 Energy. Since the parameter   was related with energy, we get that the only possible 
energy values are given as follows 
 

...,2,1,0,)
2
1(  nnEn   . 

 
Therefore the energy of quantum oscillator is discrete, difference between the neighbour levels 
is equal to  . The minimal energy is nonzero 
 

20


E  , 

 
therefore the quantum oscillator always „moves“ and cannot be at rest. 
 
6.5 Eigenfunctions. Next we try to find eigenfunctions corresponding to energy nE  . For each  

12  n  we get certain polynomial which is called Hermite polynomial 
 

)()(  nn H  . 
 
Hermite polynomials are solutions of the following differential equation 
 

0)(2)(2)(   nnn nHHH  . 
 
Eigenfunctions are expressed as 

2

2

)()(





 eHA nnn  , 
or using the variable x 




2

2

)()(
xM

nnn exMHAx



  . 

 
nA  is normalization constant. 

 
6.6 Some properties of Hermite polynomials. Before going to calculations we write down 
some useful properties of Hermite polynomials. It appears that our calculations simplify if we 
introduce certain helping function which is called the generating function. It is defined as 
follows 

222 )(2),(    sss eesF  . 
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The use of generating function is that it should be expressed, using Hermite polynomials, as 
follows 







0 !
)(

),(
n

nn s
n

H
sF


  . 

 
In order to prove it we at first give some useful relations for ),( sF  . Calculating 
 

Fses
s
F ss )(2)(2 22



     

and 

sFesF ss 22 22



  


  

we see that ),( sF  satisfies the following differential equation 
 

FF
s
F 


2






  . 

Calculating  

FsF 2
2

2

4




  

 
we see that ),( sF  satisfies the following second order differential equation 
 

0222

2













s
FsFF





 . 

 
Proof. Now we shall prove that the power series expansion of ),( sF  also satisfies the above 
given differential equation. Calculating derivatives 
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and substituting them to differential equation, we get 
 







0

0)22(
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nnn

n

nHHH
n
s

  . 

 
The left side is identically equal to zero, if and only if nH  are Hermite polynomials. 
 
Next we derive the general expression for calculating Hermite polynomials. It is possible to 
verify that 
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)()1(
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 , 

which gives 

)()1()(
22 


  e

d
deH n

n
n

n  . 

 
(here the coefficient before n  is always n2 ). 
 
Some examples 
 

,24)(,2)(,1)( 2
210   HHH  

 

124816)(,128)( 24
4

3
3   HH  . 

 
Some useful relations 
 

)()(
2
1)(,)(2)( 111    nnnnn nHHHnHH  . 

 
6.7 Normalization of eigenfunctions. Let us prove that eigenfunctions are orthonormal and find 
normalization coefficient nA . Consider the integral 
 






dxxx nm )()(*   . 

 
Going to variable   and using the general expressions of eigenfunctions via Hermite 
polynomials, we get 
 











 


  deHH
M

AAdxxx nmnmnm
2

)()(*)()(*   . 

 
In the next paragraph we prove that 
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nmkuindeHH
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nm


    

 
If m  n , the integraal is zero, therefore the different eigenfunctions are orthogonal. 
 
If m = n we normalize the function to 1. We have 
 

1!22 n
M

A n
n 


  , 

 
which gives (we choose nA  to be real) 
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  . 

 
Eigenfunctions in a final form are 
 




24/1

2

)(
!2

1)()(
xM

nnn exMH
n

Mx







  . 

 
Some special cases. Ground state. 
 

2/0 E ,   


24/1

0

2

)()(
xM

eMx






  . 

 
Behaviour of quantum oscillator is different from 
the classical one. Probability density is maximal in 
centre (equilibrium point) and is nonzero outside 
the classsical region. 

 
First exited state. 2/31 E  and 
 




24/14/3

1

2

)4()()(
xM

exMx






  . 

 
Behaviour of quantum and classical oscillators are 
also different. 
 
 
 
 
 

n = 10. The classical and quantum 
oscillators behave differently, but in the 
case of large n we see that the average of 
quantum probability distribution is 
practically equal to the probability of 
classical oscillator.  That is the general 
result, since in the limit of large quantum 
numbers we have the same results as in 
classical physics. 
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7. Harmonic oscillator (integrals) 
 
 
Here we discuss how to calculate integrals. For each special case there are certain rules and 
procedures how to do it. 
 
In the previous paragraph we used the integral  
 
















.,0
,,!2)()(

2

nmif
nmifndeHH

n

nm


    

 
Here we prove how it is calculated. The general principle is that using the generating function 
we try to find such a integral, which is expressed through above given integrals. In our case it is 
integral  






   detFsF
2

),(),(  . 

 
We write it down using the direct expression of generating function (left side of the following 
equality) and next using the expression via the Hermite polynomials (right side of the following 
equality) 
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22 2222
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nm
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   . 

 
As we see, on the right side there are just the integrals we try to calculate. We now must 
calculate the integral on the right side (which in principle simple, since we must integrate 
exponents) and then expand the result as series on s and t. 
 
The left side integraal gives us 
 
















  stusttsstttss edueedeede 22)(222 22222
   . 

 
(In the last step we changed the variable: tsu    and used the table integraal 
 




 
0

0,
2
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r
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Expanding the result as series on s and t, and demanding that it is equal to the right side, we get 
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m
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0 00
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Comparing the expressions on the left and right side we obtain the integrals we have used in the 
previous paragraph. 
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Next we give three more useful integrals (proofs are given in Appendix). 
 
First integral. 
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Second integral. 
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Third integral. 
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Example 1. Mean value of energy. Mean value of potential energy for state )(xn . Using the 
third integral, we get 
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EndxxxMdxxxMxU    . 

 
The result is the same as in the classical case. 
 
Since the energy operator is a sum of operators of kinetic and potential energy 
 

UTH  ˆˆ  , 
 
we without calculations can say that also 

2
n

n
ET   . 

(Always nEH  ˆ  ). 
 

Since 
M
p

dx
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M
T

2
ˆ

2
ˆ

2
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22


 , we find the mean value of momentum square. 
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22
1 2 n

nn
Ep

M
T   , 

therefore 

)12(
2

2  nMEMp nn
  . 

 
Example 2. Uncertainty relations for oscillator. At first we demonstrate that  
 

0)()(  




dxxxxx nnn   , 

 

0)()(  




dx
dx

xdxip n
nn

  . 

 
First result follows from tha fact that under the first integraal there is always an odd function, the 
second follows from our first integral. 
 
Next we  deal with root mean square deviation 
 

 2222222 22)()( xxxxxxxxxx  
 

22  xx  . 
 
Since 0 nx  and using the third integral, we get 
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)()( 2222 n
M
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Above we find that 
 

)12(
2

2  nMEMp nn
  . 

 
Therefore we have 
 

2
2

22 )12(
4

)()(  npx nn
  , 

 
and the standard form of uncertainty relation is 
 

)12(
2

 npx nn
  . 

 
For the ground state n = 0 it is minimal 

2


 px  , 
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for other states it increases linearly on n. Here we see that the minimal value of products of 
uncertinties is indeed 2/ , but mostly it is greater. 
 
Näide 3. Dipole transitions. Next we see see that the selection rules for electromagnetic 

transitions for dipole radiation are determined by the integral 




dxxxx mn )()(   . Only these 

transitions are allowed when that integraal is nonzero. From the above given we have 
 






 1,0)()( nmifdxxxx mn   . 

 
Transitions are allowed between the neighbouring levels and oscillator always radiates or 
absorbs energy equal to  . 
 
 
Appendix: 
 
1. First integral. Expressing it with the help of Hermite polynomials we have 
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We calculate the next integral using the following combination of generating function. 
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Next we express these integrals using Hermite polynomials 
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Comparing the expressions of both series, we get as a final result  
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Substituting the normalisation coefficient, we get the first integral. 
 
2. Second integral. That integral is calculated without the generating function. We use the 
properties of Hermite polynomials and express )( nH  as a superposition of other polynomials 
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To obtain the final result we must use integrals we calculated at first. 
 
3. Third integral. Third integral 
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is calculated with the help of generating function. We start with the integral  
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On the other hand 
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which finally gets 
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and leads to third integral. 
 
 
 
 

8. Harmonic oscillator (representation of filling numbers) 
 
 
1. Harmonic oscillator. Next we shortly discuss the representation of harmonic oscillator using 
raising and lowering operators. That method is used in quantum field theory where the quantum 
field is interpreted as some set of microparticles. 
 
We had the following Hamiltonian operator 
 

22
ˆ

22

2

22 xM
dx
d

M
H 


  . 

 
Let us define two new operators 
 

dx
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M
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M
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M
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22
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22
ˆ 


  . 

 
Direct calculation gives (prove!) that â  and â  satisfy the following commutation relation 
 

  1ˆ,ˆ aa  . 
 
Operators â  and â  are not Hermitean, but are conjugated to each other. 
 
Direct calculations demonstrate that applying them to eigenfunctions, the results are 
 

)()(ˆ 1 xnxa nn    , 
 

)(1)(ˆ 1 xnxa nn 
    . 

 
Here we see that operator â  acting on state )(xn  with energy nE  leads to state )(1 xn  with 

energy  nn EE 1  and operator â  similarly to state )(1 xn  with energy 
 nn EE 1 . Therefore they are lowering and raising operators (in quantum field theory 
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these operators are called annihilation and creation operators). In the first case energy   is 
absorbed, in the second case energy   is radiated. 
 
Using operators â  and â  the Hamiltonia operator is expressed as 
 

)ˆˆˆˆ(
2

ˆ aaaaH  
  . 

 
Using commutation relations ( 1ˆˆˆˆ   aaaa ) it is also expressed as 
 

)
2
1ˆˆ(ˆ   aaH   

 
Since nnn nanaa   


1ˆ)ˆˆ( , it is easy to verify that nn nH  )2/1(ˆ    . If we 

treat the radiation as a systems of particles (similarly, as A. Einstein interpreted electromagnetic 
radiation as a set of photons), we may interprete n as a number of particles or filling number and 
then the operator  

aaN ˆˆˆ   
 
as a particle number operator, since nn nN  ˆ . 
 
2. Model example. Next we consider the following problem. Assume that we know nothing 
about the harmonic oscillator representation, but we have the following Hamiltonian operator  
 

)
2
1ˆˆ(ˆ   aaH   

 
and nonhermitean operators â  and â  satisfy 
 

  1ˆ,ˆ aa  . 
 
Next we analyse properties of a given system, using the commutation relations and in addition 
assume that the system has a minimal energy state. 
 
At fist we find the commutation relation for Ĥ  and operators â  and â . These are 
 

      aaHaaH ˆˆ,ˆ,ˆˆ,ˆ    . 
 
We prove here the first one, using 1ˆˆˆˆ   aaaa  : 
 

      )ˆˆˆˆˆˆˆ(
2

)ˆˆˆˆˆˆ(
2

ˆ,ˆˆˆˆ
2

ˆ,ˆ aaaaaaaaaaaaaaaaaaaH     
 

aaaaaaaa ˆ)ˆ2ˆˆˆˆˆˆ(
2





   . 

 
Similarly one can prove the second relation. 
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Operators â  and â  correspondingly lower and rise eigenvalue nE  of operator Ĥ  by   . 
 
Let us consider the eigenfunction n  of Ĥ  having energy nE . We apply â  and show that nâ  

~ 1n . Using  

aHaaH ˆˆˆˆˆ    
 
and applying to n , we get 
 

)ˆ()(ˆ)ˆ(ˆ nanEanaH n   . 
 
It may be written as 

)ˆ()()ˆ(ˆ naEnaH n   , 
 
which shows that nâ  ~ 1n . 
 
Using analogically 

  aHaaH ˆˆˆˆˆ   
 
and applying to n , we get 
 

)ˆ()()ˆ(ˆ naEnaH n
    , 

 
which shows that na ˆ  ~ 1n  . 
 
Therefore â  and â  are indeed rising and lowering operators (in quantum field theory radiation 
and annigilation operators). 
 
Now we assume that there exists the state with minimal energy. We denote it 0 . Since there 
are no states below it, that sate satisfies  

00ˆ a  . 
 
Other states we get applying step by step operator â   
 
 

onsoandaaa ,0ˆˆ2,0ˆ1 21
    , 

 
i  are normalization coefficients. 

 
Our Hamiltonian operator was 
 

)
2
1ˆˆ(ˆ   aaH   . 

 
Applying to state 0  and using 00ˆ a  we get 
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0
2

0ˆ 
H  . 

 
Therefore minimal energy is E0 =  /2. 
 
For 1  we at first write 
 

0ˆ)
2
1ˆˆ(1ˆ

1
  aaaH    . 

 
In similar expressions we use 1ˆˆˆˆ   aaaa  one, two, or more times to move operators â  left 
from operators â  and then use 00ˆ a . For a given case the above given relation is used once, 

writing   aaaaaaa ˆˆˆˆˆˆˆ , which gives 
 

1
2

30ˆ
2

31ˆ
1

 
 aH  . 

 
Therefore the energy of 1  is E1 =   )2/11(2/3  . 
 
Using operators â  we can generate states 
 

0)ˆ( n
n an   

 
wiht energy )2/1(  nEn  . The number n is called filling number (interpreting it as 
particle system it is number of particles) for a given state. Operator 
 

aaN ˆˆˆ   
 
is called filling nymber (particle number) operator 
 

nnnN ˆ  . 
 
Our model system was interesting, since we derived important physical results, basing only on 
commutation relations and some general assumptions (minimal energy). 
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9. Angular momentum in quantum mechanisc 
 
 
9.1 Angular momentum operator. In classical physics angular momentum is defined as 
 

prL 
  , 

 
the corresponding operator in quantum mechanics is 
 

prL ˆˆ 
  . 

 
In rectangular coordinates it has components 
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Direct calculation gives the following commutation relations 
 

  zyx LiLL ˆˆ,ˆ   ,     xzy LiLL ˆˆ,ˆ   ,     yxz LiLL ˆˆ,ˆ   . 
 
The components do not commute and are not simultaneously measureable. If we want exact 
values, then only one component is exatly measureable (other components are then arbitrary). 
 
In addition to one component the square of angular momentum is simultaneously measureable. 
Indeed, the root is 

2222 ˆˆˆˆ
zyx LLLL 


 , 

and it is possible to verify that  
 

0ˆ,ˆ2 





xLL


 ,     0ˆ,ˆ2 





yLL


 ,     0ˆ,ˆ2 





zLL


 . 

 
Next we choose the following measurable: square of angular momentum and z-component 
 

zLL ˆ,ˆ2


 
and shall solve two eigenvalue problems 
 

YLYL 22ˆ 


 ,  YlYL zz ˆ  . 
 
9.2 Angular momentum in spherical coordinates. Since angular 
momentum is important in the case of central symmetric fields, it is 
useful to go to spherical coordinates.  
 

 cossinrx   , 
 

 sinsinry   , 
 

cosrz   . 
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Since the calculation of components is quite tedious, we give only results. 

)coscot(sinˆ
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 iLy  , 
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9.3. Eigenvalue problem of  zL̂ . We start from the z-component and its eigenvalue problem 
 

)()(ˆ  zz lL  , 
which gives 





zli 



   . 

 
The general solution is  


 

zil

e)(  . 
 
The continuity condition  
 

)2()(    , 
gives that 

1
2



zil

e  . 
That is possible, if 

...,2,1,0,  mkusml z   . 
 
Therefore the eigenvalue problem we started with, is 
 

...,2,1,0,)()(ˆ  mmLz    , 
 
where the quatum number m is historically called the magnetic quantum number. In reality, it 
gives projections of angular momentum. Differently from classical physics the projections of 
angular momentum in quantum mechanics are discrete, not continuous. 
 
Since we shall use the eigenfunctions of angular momentum projection in some cases separately 
we normed them separately. Writing  

 imeA)(  , 
 
where A is normalization factor, we from 
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12* 2
2

0

2
2

0

   





AdeeAd imim  

have 2/1A  (if possible, we always choose the normalization factors to be real numbers). 
 
The final expression of eigenfunctions is 
 




 im

m e
2
1)(   . 

 
9.4 Eigenvalue problem of 2L̂


 . Next we consider the more complicated eigenvalue problem. 

We write it as 

),(),(ˆ 22   YYL 


  , 
 
where the eigenvalue we try to find is denoted as  . Since ),( Y  is at the same time the 

eigenfunction of zL̂  and we just find them, we represent ),( Y  in form 
 


 


 im

m ePY )(
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1),(   . 

 
If we use the direct expression of 2L̂


 , we have 
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and after substitution we get for )(mP  
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  . 

 
The last problem is solved using the same general principles as in the harmonic oscillator case. 
Therefore we do not give here the exact derivation (you may find it in textbooks, if needed), but 
give some general remarks of how to do it.  
 
9.5 New variable. It is useful to change the variable and take 
 

cosw  , 
 
which has its values between –1 and +1. It gives differential equation 
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dw
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   , 

 
or the same as 
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9.6 Singular points. Since 11  w , we must analyse behaviour in singular points 1 . 
 
Near 1w  the equation reduces to 
 

0
)1(41

1
2

2






 mmm P

w
mP

w
P   

 
If we try to find solution in form 
 

 ...)1()1()( 10  waawwP m


  , 
 
where 00 a , we get, demanding that the term before 2  is zero,  the condition 
 

0)
4

()
4

)1((
2

2
0

2

0 
mama   . 

It has two solutions 

2
m

  . 

 
It is obvious, that negative degree is unphysical, since if 1w , then P . Therefore, if it is 
positive, there are no problems when 1w  and we choose  

2
m

  . 

 
Analogically, for 1w  we try to find solution in form 
 

 ...)1()1()( 10  wbbwwP m


   
and similarly find that 

2
m

  . 

 
9.7 The general form of solution. Using the above given analysis, we try to find solution in the 
following form 

)()1()()1()1()( 2222 wZwwZwwwP m

m

m

mm

m    , 
 
where mZ   must satisfy differential equation 
 

  0)1()1(2)1( 2  mmm ZmmZwmZw    . 
 
Since here are no singularities, we choose mZ   to be the following power series expansion 
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The equation dives the following reccurrent expression for coefficients 
 

kk amkmkakk ))1)((()1)(2( 2    . 
 
9.8 Finite power series function. Here also the power series function must be finite (if infinite, 
then in points 1w  function mZ   is infinite). Demanding that 
 

0,0 2  kk aanda  , 
 
we obtain that  

)1(  ll  , 
where we denoted 

mkl   . 
l has values 

...,2,1,0l  . 
 
That new quantum number l, which gives us square on angular momentum, is called the orbital 
quantum number. 
 
From mkl  , where k = 0, 1, 2, ... , we have the following restriction to the magnetic 
quantum number m 

lm   . 
 
For each orbital quantum number l there is 2l+1 possible values for magnetic quantum number 
m (possible projections for angular momentum) 
 

llllm  ),1(...,,0...,,1,  . 
 
9.9 The result. The eigenvalue problem has the following solution 
 

lmlm YllYL )1(ˆ 22  


 , 
where 

...,2,1,0l  
and 

llllm  ),1(...,,0...,,1,  . 
 
Eigenfunctions are 




 im
lm

lm
lm eP

N
Y )(

2
),(   , 

 
where the polynumials )(lmP  are called associated Legendre’ polynomials (if m = 0, then 
Legendre’ polynomials) and lmN  is normalization constant. Eigenfunctions ),( lmY  are called 
spherical functions. 
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For spherical functions there is also developed the mathemacical formalism for calculating 
integrals, which is also based on generating function. Since one can find them in textbooks, we 
here give one example to demonstrate the problems we face using Legendre’ polynomials.  
 
If we want to normalize spherical functions, we must calculate integrals 
 

  1),( 2 dYlm   
over whole solid angle. dΩ is 
 

 ddd sin  . 
 
More detailly 
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Integrating over   we get 2 . Going further to cosw , we must calculate the following 
integral 

  1)(
21
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dwwPN lmlm . 

 
Here we need integrals over associated Legendre’i polynomials. Here we use 
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From the above given we may choose the following normalization coefficient for spherical 
functions 

2/1
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In conclusion, some spherical functions for lower l values (l = 0, 1, 2 ) 
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The following figure gives graphical illustration of spherical functions (below is the classical 
orbital motion,corresponding to the same angular momentum and its projection). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In quantum world (microworld) angular momentum and its projection are discrete. 
 
 


