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1. Schrödinger equation 

 
 
In the first paragraphs let us remind some basics concepts of quantum mechanics, treated in the 
bachelors course of modern physics (introdustion to quantum mechanics). In microworld classical 
physics (Newtonian mechanics) is not applicable, since microparticles are at the same time particles 
in the usual sense and waves (matter waves), having certain wavelength and frequency. Therefore 
we must use different concepts and different „rules of play“, and also the mathematics used is 
somewhat different from that studied in calculus.  
 
1.1 Wave function. We start with single microparticle. Its state is described by the wave function 
 

,),( tr  
 
which is determined in finite region of space or infinite space, depends on time and has in general 
complex values ( C ). In our course we use mainly the old fashioned name – wave function, but 
Ψ is also called state function or probability amplitude. 
 

The physical meaning of the wave function is the following: 
its square of modulus 2),( tr  is proportional to the 
probability to find our particle at certain moment of time t in 
the small element of volume dV 
 

dP   ~  2),( tr dV . 
 
Therefore the wave function itself is not directly measurable 
quantity, but its square of module is. One can compare 
probabilities in different places. It also follows that wave 
functions ),( tr  and ),(),(' trAtr 

 , where A  is some 
numerical constant, describe the same physical state (they give the same ratio of probabilities). 
 
1.2 Normalization of the wave function. For Ψ there are two possibilities – integral over the 
square of modulus (we integrate over the whole space or region where the wave function is 
nonzero) is finite or it is infinite. 
 
1. In the first case we can normalize the integral to unit. In other words we consider only these 
wave functions, which satisfy 

1),(
2

 dVtr  . 
 
(We simplify our notations and write space integrals as dV  not dxdydz  and also omit the 
boundaries, if these are not neccesary.) 
 
Now the wave function gives us the probability of finding particle in certain volume element dV 
 

dVtrdP 2),(  , 
 
since the sum of all probabilities equals to 1 
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   dVtrdP
2

),(1   . 
 
The square of modulus of wave function gives us probability density 
 

2),(),( tr
dV
dPtr 

  . 

 
Problem 1.1 Prove, that if the integral   adVtr 2),('   is finite the wave function can be 
normalised to unit. 
 
 
2. In the second case we have 

 dVtr
2

),(   
 
(example: free particle, described by the de’Broglie wave). One can compare probabilities in 
different places, but not directly calculate them. In that case wave functions usually are normed to 
 -function (see next paragraph). 
 
1.3 Conditions on wave functions. All wave functions must satisfy the following conditions – the 
wave function is finite, unique and continous function, the first space derivatives are continuous. 
The first ones (finite, unique and continous) follow from the physical meaning of wave function 
since it gives probability, the last one is purely mathematical, since wave function is calculated from 
the differential equation (Schrödinger equation) which contains second order space derivatives. It 
should be mentioned that these conditions are very important, because only these solutions which 
satisfy above given conditions have physical meaning. 
 
1.4 Schrödinger equation. The basic equation in quantum mechanics is the Schrödinger equation. 
Its general form is the following 
 

,),(),(),(
2

),( 2

trtrUtr
Mt

tri 


 


  

 
where ),( trU   is the potential function of a given particle (potential energy), M  is a mass of 

particle and   is the Laplace operator (in rectangular coordinates 2

2

2

2

2

2

zyx 










 ). It is 

also called time dependent Schrödinger equation. 
 
If we treat physical problems in quantum mechanics, we at first must solve the Schrödinger 
equation for a given potential and then analyse the physical content of a given wave function. Later 
we see, that it gives us also the results which one may obtain in experiments. 
 
It should be noted that quantum mechanics is a normal physical theory which describes processes in 
nonrelativistic microworld. Sometimes it is stated, that the quantum mechanics is not satisfactory 
theory, since it gives only probabilities and for that reason it seems that the behaviour of 
microparticle is chaotic and for that reason not deterministic. But it is not so, the probabilistic 
behaviour is characteristic to microparticles, but on the other hand it is deterministic, since the wave 
function is determined uniquely if the initial conditions are given. As we already mentioned, 
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microparticles are at the same time particles (corpuscules) and waves, and these qualities need 
different concepts.  
 
1.5 Continuity equation. From the Schrödinger equation it follows the continuity equation for 
probability density 2),( tr  

0

 jdiv

t
  , 

where the vector quantity 

)**(
2

 gradgrad
M
ij 

 

 
is called the probability current density. 
 
Problem 1.2. Derive the continuity equation. 
 
In the case of electrically charged particles we can obtain charge density and current density. If the 
electrical charge, carried by particle, is q then the charge density is 
 

 ql   
and current density is 

jqjv


 . 

 
 
Example. One dimensional de’Broglie wave (free particle with the momentum p) 
 

)(
),(

xptEi

eAtx


   . 
 
Now 2A  (probability density is constant) and probability current density is 
 

22)**(
2

A
M
p

M
p

dx
d

dx
d

M
ij 







  . 

 
Since vMp  , we get 

2Avj   , 
 
which describes the particle, moving with the velocity v , or flux of moving particles. 
 
1.6 Schrödinger equation for stationary states. If )(rUU 

 , the Schrödinger equation 
simplifies, since the time dependence may be eliminated. 
 
Indeed, in 

),()(),(
2

),( 2

trrUtr
Mt

tri 


 


  

 
it is possible to separate the variables. Writing 
 

,)()(),( rtftr 
  



Rein-Karl Loide   Kvantmehaanika 7 

we have 

.)()()()()(
2

)()( 2

rtfrUrtf
M

r
dt

tdfi 
    

 
Dividing both sides by f  we get the equation where the varianbles (time and coordinates) are 
separated 

.)()(
)(

1
2

)(
)(

1 2

rUr
rMdt

tdf
tf

i 



  


 

 
If we equalize both sides to some constant E, the left side gives 
 

,)(
)(

1 E
dt

tdf
tf

i   

which after simple integration gives 

.)(
tEi

etf 


  
 
The right side gives us the Schrödinger equation for stationary states (also known as time 
independent Schrödinger equation) 
 

.)()()()(
2

2

rErrUr
M

    

 
Constant E is the total energy of a given particle. On the other hand the latter equation is the 
eigenvalue problem 

.)()(ˆ rErH 
   

of the Hamiltonian operator 

)(
2

ˆ
2

rU
M

H 
  . 

 
For each solution for stationary states there is the following solution for the general Scrödinger 
equation  

)(),( retr
tEi 

 


 . 
 
The function )(r  is also called wave function and it has the same probability interpretation as 

),( tr  
22 )(),( rtr 

   otherwise 22 )0,(),( rtr 
  . 

 
The probability density does not depend on time, therefore the probability is time independent – 
stationary. 
 
1.7 Superposition principle. The general Schrödinger equation is linear concerning the wave 
equation   
 

),(),(),(
2

),( 2

trtrUtr
Mt

tri 


 


 . 

 
We can write it symbolically as 
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.0ˆ A  
 
The superposition principle means that if 1  and 2  are two arbitrary solutions, then their 
arbitrary linear combination 

2211  aa  
 
is also a solution of a given Schrödinger equation. 
 
However, it is a common property of linear equations, in quantum mechanics it has a totally 
different meaning comparing classical physics. If for example 1  and 2  are two stationary states 
corresponding to different energies 
 

)(),(,)(),( 2211
21 retrretr

tEitEi 
 


  , 

 
where )()(ˆ

111 rErH 
   ja )()(ˆ

222 rErH 
  , then the possible physical state is also their 

linear combination 
 

),(),(),( 2211 trctrctr 
  . 

 
The physical meaning of a given solution (see next paragraph) is the following: in state ),( tr  the 
energy is not uniquely fixed, measuring energy we get both values, sometimes 1E , sometimes 2E , 
probabilities of both results depend on 1c  ja 2c . 
 
Comments: 
 
1. In the stationary case the general solution of the time dependent Schrödinger equation is the 
arbitrary linear combination  





n

n

tEi

n rectr n )(),( 
   . 

 
2. In paragraph 13 the above given Schrödinger equation is generalized to the case where an 
external electromagnetic field is present. 
 
3. Phase transformations. The wave equation is not determined uniquely. Even if normed, the 
functions 

),( tr and ),( trei 
  

 
(where R ) give the same probability density. Therefore these transformations in ordinary 
quantum mechanics are not physically interesting, but as we see later, analogical phase 
transformations where the phase factor ),( tr   is a function of space and time are very 
important in modern particle physics. 
 
4. Microparticles have dualistic properties – they are at the same time both – particles and waves. 
Free particle is described with the help of de’Broglie wave (one dimensional case), which one can 
represent in two equivalent forms 
 

)()(
),( xktixptEi

eetx 
   , 
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(particle side is chacterized by energy and momentum, wave side by frequency and wave number). 
It satisfies the free particle equation 
 

2

22 ),(
2

),(
x

tx
Mt

txi






 
  . 

 
De’Broglie wave cannot be interpreted as a classical wave: it has complex values and is not a 
solution of classical wave equation. 
 
Classical wave equation is 
 

2

2

2

2

2
),(),(1

x
tx

t
tx

v 




  , 

 
where v is a velocity of a given wave. 
 
Problem. Prove that 1) de’Broglie wave is not a solution of classical wave equation; 2) de’Broglie 
wave must be function having the complex values, since its real part 

)(cos),(Re),( xkttxtx    
does not satisfy the Schrödiner equation. 
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2. Operators 
 
 
 
The mathematics of quantum mechanics is based on operators. 
 
2.1. Operator, linear operator, eigenvalue problem. To each physical quantity A corresponds 
some linear operator Â  (what is operator and linear operator – see comments at the end of the 
paragraph). For each operator the most important problem is the eigenvalue problem 
 

.ˆ
nnn aA    

 
Eigenvalus ...,...,,, 21 naaa  are the possible measureable quantities of A. The set of all eigenvalues 
is called the spectrum of a given operator. That may be discrete, continuous or both. 
Eigenfunctions ...,...,,, 21 n  describe states, where the values of A are correspondingly 

...,...,,, 21 naaa .  
 
In the folliwng we mostly treat the cases where the eigenvalues are different and discrete, and to 
each eigenvalue there is only one eigenfunction, or several eigenfunctions. 
 
All the measurable physicsl quantities are expressed by the real numbers, therefore we need 
operators, where all eigenvalues are real numbers. 
 
2.2 Hermitean operators. All operators which correspond to some physical quantity are 
Hermitean. In order to define Hermitean operators, we introduce the bilinear form (scalar product) 
of functions. 
 
Bilinear form of functions   ja   is the following integral 
 

 dV *  . 
 
We use the Dirac notation, where    is the “ket”-vector and *   is the “bra”-vektor 
(bracket). 
 
Conjugated operator. For each Â  we may write down an integral 
 

 dVAA  ˆ*ˆ  , 

 
which is the bilinear form of   and Â . 
 
For each operator Â  there also exists an operator B̂ , which satisfies 
 

dVAdVBorAB )ˆ(**)ˆ(ˆˆ     . 

 
Operator B̂  is a conjugated operator for Â  and is denoted .ˆˆ  AB  
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Hermitean operator. Hermitean operator is operator which equals to its conjugated operator (is 
therefore selfconjugated) 

AA ˆˆ   . 
 
Hermitean operaator Â  therefore satisfies 
 

 AA ˆˆ   ,   or     .)ˆ(**)ˆ( dVAdVA   

 

Example. Momentum operator 
dx
dip ˆ  is Hermitean. We assume that both functions )(x  

and )(x vanish in infinity, we after integrating by parts, obtain 
 


















 dx
dx

diidx
dx
didx

dx
dip 










***)(*ˆ   

 










 



 pdx

dx
didx

dx
di ˆ*)(*

  . 

 
 
2.3 Eigenvalues and eigenfunctions of Hermitean operators.  
 
Theorem 1. Eigenvalues of Hermitean opertators are real numbers. 
 
Proof. Let us have some Hermitean operator Â  with its eigenvalues na  and corresponding 
eigenfunctions n  

nnn aA  ˆ      or     .ˆ
nnn aA    

Eigenvalue problem for complex conjugated eigenfunction mm  *  is 
 

**)*ˆ( mmm aA        or     .*ˆ
mmm aA    

 
Taking the scalar product of the first equation with mm  *  we get 
 

nmnnm aA  ˆ  .  

 
Taking similarly the scalar product of the second equation with nn    we get 
 

.*ˆ
nmmnm aA    

 
Since Â  is Hermitean, the last expression may be written as 
 

nmmnmnm aAA  *ˆˆ   . 

 
From the above given equations we get the result that 
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0*)(  nmmn aa  . 

 
At first we assume, that m = n. Then we get 
 

0*)(  nnnn aa   . 
 

Since 0
2

  dVnnn  , we have 

nn aa *  , 
 
which proves that eigenvalues of Hermitean operator are real numbers. 
 
Theorem 2. Eigenfunctions of Hermitean operator form an orthonormal system of functions. 
 
We treat three different possibilities. 
a) We assume that eigenvalues are discrete numbers and different, and for each eigenvalue na   
correspond only one eigenfunction n . Since the eigenvalues are real numbers, we have  
 

0)(  nmmn aa  . 
 
If we now take nm  , we have 
 

,0nm   
 
which means that different eigenfunctions are orthogonal. For the same eigenfunctions we have 

0nn  , therefore the eigenfunctions may be normed to one - 1nn  . 
 
In conclusion   .* mnnmmnnm dVor   
 
b) Eigenvalues are discrete, but to one eigenvalue na  there corresponds k different eigenfunctions 

nknn  ...,,, 21 . It is obvious, that all k eigenfunctions are orthogonal to other eigenfunctions. In 
order to get orthonormed set of eigenfunctions, one must in addition to orthonorme eigenfunctions, 
corresponding to na  . We do not give the general proof, but as an example analyse the case of two 
different eigenfunctions. 
 
We assume, that for some eigenvalue there exists two eigenfunctions which in general are 
independent, but not orthogonal: therefore we have functions 1  and 2 , and assume that 

021  d . We demonstrate, that we can form two orthogonal functions 1  and 2  (which 
afterwards may be normed to 1). At first we take 11    and try to find an orthogonal function 
using linear combination 212  ba  . Demanding 021  , we have 
 

02111211   baba  . 
 
If we choose dab /11  , 1  and 2  are orthogonal. (Of course that procedure is not 
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unique, but there are always two orthogonal eigenfunctions.) 
 
c) Eigenvalues are continuous. One example is free particle. Its energy and momentum spectrum is 
continuous. The eigenvalue problem is the same, as in the previous cases, but a is continuous 
 

.'ˆ,ˆ
'' aaaa aAaA    

 
One can similarly prove that  

.',0' aaifaa   
The problem is that integral  

  dVaaa
2 , 

 
i.e. it is not finite, since eigenfunctions do not vanish in infinity. 
 
Now the eigenfunctions are normed to the Dirac δ-function 
 

)'(' aaaa    ,      or       .)'(* ' aadVaa   
 
Normalization in finite volume. In the continuous case one may use the trick, which makes the 
continuous spectrum discrete. We divide the whole space to cubes which sides have lenght L. We 
assume that L is always much bigger than are the linear dimensions of our physicsl system and for 
that reason we consider wave functions only in one cube. To connect wave functions in different 
cubes usually periodical initial conditions are used.  
 
Example. Let us consider the free particle moving on x-axis and try to normalize the 
eigenfunctions of momentum operator. The x-axis is divided to line segments wiht the length L. 

The eigenfunctions of the momentum operator 
dx
dip ˆ  are 

 

xpi

p ex )(  . 
 
If there are no restrictions, the momentum spectrum is continuous  p . 
 
But now, dividing the x-axis and using periodical initial conditions we must have 
 

)()( Lxx pp    . 
 
Now we get discrete eigenvalue spectrum, since from the above given we get 
 

1
Lpi

e   , 
and therefore 


 ,2,1,0,2

 nn
L

p   . 

 
If we choose quite large L  the difference between momentum values for n and n+1 may be small 
(practically continuous).  
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Wave functions are normed on finite legth L , therefore there are no problems with infinities. 

Taking 
xp

h
i

eAx )(~ , we get 
 

LAdxAdxx
LL

2

0

2

0

2)(~~~     . 

 
If we choose LA /1  the wave function is normed to 1. 
 
2.4 Completeness of eigenfunctions of Hermitean operators. Eigenfunctions form a complete 
set of functions. In other words it means that if we had some orthonormal system of eigenfunctions 

...,...,,, 21 n  of some Hermitean operator Â , then an arbitrary function   is expanded as a 
sum (sequence) 


n

nnc ,  

 
where nc  are some numerical coefficients, obtained as 
 

. nnc   
 
Geometrical interpretation: eigenfunctions n  is treated as a set of orthogonal unit vectors of some 
vector space and nc  are treated as coordinates of   .  
 
Let us assume, that   is presented as 
 

 
n n

nnnn corc   . 

 
To get mc  we find a scalar product with mm  *  and use the orthonormality of n  
 

  mmnn
n

nmnm ccc  . 

 
In other words 

 .* dVc
mm   

 
Compliteness of eigenfunctions. If we put nc  back, we get 
 


n

nn ,  

 
or using bra and ket vectors 
 


n

nn   . 

 
From the above given we see, that eigenfunctions must satisfy 
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.I
n

nn    

 
The latter is the compliteness conditon. It may be written as 
 

 
n

nn rrrr )'()()'(* 
  

(prove it). 
 
Example. Fourier’ integral. 1-dimensional case. Let us have some continuous function f(x). 
Fourier’ integral is defined as 






 ,)(
2
1)( dkekgxf ikx


 

 
where g(k) is similarly calculated from f(x) 
 






 .)(
2
1)( dxexfkg ikx


 

 
In quantum mechanics it has the following interpretation: functions exp(ikx) are the eigenfunctions 
of momentum operator (and form a full system of functions), therefore every continous function 
f(x) may be presented as Fourier integraal. If we put g(k) back, we get (which is also one possible 
definition of δ-function) 






  .)'(2)'( kkdxe xkki   

 
2.5 Physical meaning. Let us give the physical meaning of sequence  
 


n

nnc  ,  

 
where   is a state function (wave function) of some particle and n  are eigenfunctions of operator 

Â  corresponding to some physical quantity A (energy, momentum, etc). 
 
If we perform measurements of A, the results are equal to the eigenvalues ...,...,,1 naa . The 
probability of results depends on ...,...,,1 ncc . Namely – 
 
 we get 1a  with probability  1c 2, 
 2a  with probability  2c 2, 
 (and so on). 
 
The sum of probabilities is equal to unity  
 

.**1 2

,,
 

n
n

nm
mnnm

nm
nmnm ccccc   

 
If, for example, our measurements give only one value na  of A then we have n  , in other 
cases the value of A is not uniquely determined. If we have the state  , which is expressed as 
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2211  cc   

 
and A is, for example energy, then the measurements of energy give us as a result two values: 1a  or 

2a . 1a  has probability  1c 2, 2a  has probability  2c 2. It means that in microworld there exist 
states where the energy (or some other physical quantity) is not uniquely determined. Such states 
are more common that the states with a fixed energy. 
 
 
Comments, appendices: 
 
1. Operator, linear operator. Let us have some set of functions X. Operator is a prescription, using 
which for every function Xf   is set in corrspondence some other function Xg  (from the same 
set of functions, in other words it is a function of functions). We denote it as Â  and write 
 

fAg ˆ  . 

 
In quantum mechanics we use only linear operators. By definition, linear operator satisfies the 
following two conditions 

2121
ˆˆ)(ˆ fAfAffA   , 

 

fAaafA ˆ)(ˆ   , 

 
where Xfff ,, 21  and Ca  is some number (real or complex). 
 
The sum and product of operators. Sum 
 

fBfAfBA ˆˆ)ˆˆ(   , 

product 

)ˆ(ˆˆˆ fBAfBA   . 

 
 
2. δ-function. 1-dimensional case. δ-function (Dirac δ-function) is defined as follows 
 

00)(,00)(  xifxxifx    
and 

 baxifdxx
b

a

,01)(   . 

 
From the definition it follows, tha for arbitrary function f(x) 
 

 
b

a

fdxxxf )0()()(   , 

and 
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 backuicfdxcxxf
b

a

,)()()(    . 

 
δ-function as integral.  
 
Since 

1)sin(








 dg  , 

 
δ-fuction is expressed as limit 
 





)sin(lim)( g

g 
  . 

 
Since  

 







g

g

i deg



 

2
1)sin(  , 

we have 






 


  de i

2
1)(  . 

 
 
δ-function as a limit. In the following we also use the definition of δ-funktsiooni as the following 
limit 

2

2 )(sin
lim)(

xA
xAx

A 



  . 
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3. Uncertainties of measurements (uncertainty principles) 
 
 
In a microworld it is common that not all physical quantities are exactly measureable and for that 
quantities we have some uncertainty relations. It appears that the problems of exact measurements 
are connected with operators. 
 
If operators of two physical quantities A and B - Â  and B̂  commute 
 

  ,0ˆ,ˆ BA  
 
( ABBA ˆˆˆˆ  , i.e. for each   we have  ABBA ˆˆˆˆ  ), the physical quantities A ja B are at the same 
time(simultaneously) exactly measureable. But if operators do not commute 
 

  ,ˆˆ,ˆ CiBA   
 
( Ĉ  is some nonzero Hermitean operator) A and B are not simultaneously measureable, and we 
have certain restrictions on measurements, called uncertainty principles. 
 
3.1 Simultaneous measurements, exact values of observables. If 
 

  0ˆ,ˆ BA ,  
 
we prove, that A ja B are simultaneusly measureable. 
 
If we assume, that measurements of A ja B give simultaneously certain exact values a and b, then 
opeators commute. Mathematically it means, that there exicts such state function (wave function) 
 , for which 

.ˆˆ  bBandaA   
 
Therefore, operators have common eigenfunctions. Now it is easy to demonstrate that ABBA ˆˆˆˆ   
(prove it!).  
 
And vice versa, if  

  0ˆ,ˆ BA  , 
Â  
 

aa aA  ˆ  
 
and demonstrate that these are also eigenfunctions of operator B̂ . Let us apply operator B̂  
 

.)ˆ()ˆ(ˆ
aa BaAB    

 
Since operators commute, we have )ˆ(ˆ)ˆ(ˆ

aa BAAB   , and therefore  
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.)ˆ()ˆ(ˆ
aa BaBA    

 
Now we see that  aB̂  is the eigenfunction of operator Â  with the eigenvalue a, and therefore 
 

aaB  ~ˆ  . 
 
We can find a constant b, that 
 

aa bB  ˆ . 
 
Therefore each eigenfunction of Â  is at the same time also eigenfunction of B̂  .Therefore the 
quantities have simultaneous observables a and b.  
 
 
3.2 Mean values of physical quantities. The mean value of physical quatity in the state, described 
by wave function  , is calculated from 
 

 .ˆ* dVAA   
 
Proof. Using eigenfunctions of Â  we have an expansion 
 


n

nnc .  

 
Since  nc 2 is probability, that we obtain the result na  (n = 1,2, ... ), the mean value is calculated 
as 

.2
n

nn caA  

 
From the above given   ˆˆ   AAA  .ˆ* dVA  If we replace one   and use 

nnnc   **  we have 
 

 
n

nnn
n

nn accAAA  )(ˆˆ  

 

 
n n

nnnnn caca 2  . 

 
3.3 Uncertainty relations. Let us assume that  
 

  CiBA ˆˆ,ˆ    
 
and derive uncertainty formulas for measurements of quantities A ja B . It is obvious, that the 
deviations of mean value is not usable, since its mean value is zero, therefore we consider the mean 
value of its square, which we define as follows (root mean square deviation) 
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  dVAAA  22 )ˆ(*)(  , 
 

  dVBBB  22 )ˆ(*)(  . 
 
For these quantities one can prove the following general result 
 

222 )
2
1()()( CBA   , 

 
which means the root mean square deviations cannot be simultaneusly equal to zero and therefore 
we have no exact simultaneous values of observables A and B. 
 
Proof. We present the simpler version, assuming that the mean values of A ja B are equal to zero 
 

0 BA  . 
 
Now the root mean square deviations are 
 

 dVAAA  222 ˆ*)(      ja      dVBBB  222 ˆ*)(  . 
 
Let us take the nonnegative integraal, where   is some real parameter 
 

  0)ˆˆ()(
2
dVBiAJ   . 

 
Since Â  ja B̂  are Hermitean, one may write 
 

  dVBiABiAJ  )ˆˆ(*))ˆˆ(()(  
 

  dVBiABiA  )ˆˆ)(ˆˆ(*  
 

  dVBABBAiA  )ˆ)ˆˆˆˆ(ˆ(* 222  
 

  dVBCA  )ˆˆˆ(* 222  . 
 
(We have used the commutation relation for Â  and B̂  ,) 
 
Using mean values it is 
 

 222 )()()( BCAJ   . 
 
Since 0)( J , the cofiicients must satify 
 

222 )()(4  CBA  ,  
 
which is our uncertainty relation. 
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Example. Let us have operators (coordinate and momentum) 
 

.ˆˆˆˆ
x

ipBjaxxA x 


   

We have 
  ,ˆ, ipx x   

 
therefore Ĉ . Uncertainty relation is 
 

4
)()(

2
22 
 xpx  . 

 
Usually it has simpler expression, if we define  
 

,)()( 22
xx ppandxx   

 
then we have 

.
2


 xpx  

 
(Similar expressions we have also for y- ja z-coordinates and correponding momenta.) 
 
 
 
 

4. Potential barriers, tunnel effect 
 
 
4.1 Potential barrier (E > U). Consider the following potential energy 
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Let us consider the flux of particles moving from the left to 
right and analyse their behaviour if the energy of particles E 
is higher than Uo. 

 
For classical particles we know that all particles moving from left (region I) continue their moving 
in the region II, but for microparticles the behaviour of particles is different, some particles always 
reflect back and do not reach the II region. 
 
We find the solutions of the Schrödinger equation in regions I and II and then apply the continuity 
of solutions for x = 0. 
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Region I. Since U = 0, the Schrödinger equation may be written as 
 

02   k  , 

 

where 22 /2 MEk   . General solution is 
 

ikxikx Beex )(1  . 

 
eikx describes particles moving from left to right. We assume that the  initial flux of particles moving 
toward the barrier is known and take the coefficient before it equal to one (A = 1) and the flux of 
particles moving towards the barrier is equal to k/M. The second term Be-ikx describes the particles 

that are reflected back. The flux of reflected particles is equal to  k 2B /M. 

 
Region II. Now U = Uo, and the Schrödinger equation is 
 

0)()( 2  xkx   , 

 

where 2
0

2 /)(2 UEMk   . Special solutions are 

 
xikxik ejae ''   . 

 
Since in the region II there are particles moving from left to right, the general solution is 
 

xik
II Cex ')(   . 

 
In order to find the general solution to our problem, we must use the continuity conditions, which 

means that )0(')0(',)0()0( IIIIII    . 

 
Using these conditions we after some algebra get that 
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Therefore the general solution is 
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The main result we obtained is that B ≠ 0 and therefore some particles indeed reflect at x = 0 back.  
 
Let us calculate the flux of particles. The flux of particles, moving towards the barrier (incident 
particles) is  
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d

dx
d

M
ijl


 )**(

2
  . 

 
The flux of reflected particles and particles moving to region II are correspondingly 
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If we define the reflection coefficients and transition coefficients (R and L) as 
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j
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it is possible to verify that 
1 LR  . 

 
4.2 Potential barrier (E < U). Barrier is the same, but now we assume that E < Uo. The classical 
particles must reflect at x = 0 back, since classical particles can move only in regions where E ≥ U. 
Microparticles have some probability to move in regions where E < U (in regions where kinetic 
energy is negative!). 
 

Region I. The general solution is the same as in the previous 
case 

ikxikx
I Beex )(  . 

 
Region II. Schrödinger equation is 
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where 2
0

2 /)(2 EUM  . Special solutions are xe  and xe  . Since the solution must exist in 

the region 0 ≤ x <  , the first one is not applicable, since in x →   case xe  → , the second 
solution is applicable, since it is finite. Therefore the general solution is  
 

x
II Cex  )(  . 

 

Applying the conditions )0(')0(',)0()0( IIIIII   , we get B and C  
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and the general solution is  
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The result is physically very interesting. The fact, that particles reflect back is obvious, but the fact 
that C ≠ 0 is shocking, because it is possible to obtain particles inside the barrier (which is forbidden 
to classical particles). Probability density of finding particles inside the barrier is 
 

x
II e
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22
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  . 

 
The probability density is increasing exponentially. 
 
 
 
 

Probability distribution 2  graph. On the left side there 

is the interference picture of particles (waves) moving 
towards the barrier and reflected particles. 

 
It appears, that finally all particles reflect back, since the reflection coefficient is equal to 1. Indeed, 
the simple calculation gives (prove!)  
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4.3 Tunnel effect (tunneling). Consider the next potential barrier 
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Let us consider the flux of particles moving in the region I 
from left to right (toward the barrier) with energy E that is 

less than U0 (E <Uo ). Since the with of barrier is finite there is nonzero transition probability and 
some particles may move to the region III. That effect is called the tunnel effect or tunneling. Of 
course, in classical physics there is no tunneling, since all classical particles must reflect back at x = 
0. 
 
In order to prove tunneling we find general solutions for each region and then apply the continuity 
conditions for x = 0 and x = a. Region I  
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Region II  
xx

II eDeCx  )(  . 

 
(Since 0 ≤ x ≤ a both special solutions must be used). Region III 
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Continuity conditions  
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gives solutions  
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Since F ≠ 0 there exists tunneling, particles have nonzero probability to „go through“ barrier.  
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Transition coefficient  
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It depends on 


)(2 0 EUM 
  and a. 

 
The general solution is quite complicated and we 
therefore consider the simpler, specific case where κa 

>> 1 . Then sh2κa ≈ ch2κa ≈ ae 2 /4 and we get  
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Transition probability decreases exponentially  
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Calculating R = 2B , it is possible to verify that 
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