1. Derive classical expressions for L_{x}, L_{y}, L_{z} projections for angular momentum vector.
2. Derive expressions for the projections of the angular momentum operator $\hat{L}_{x}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)$, $\hat{L}_{y}=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right), \quad \hat{L}_{z}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)$.
3. Derive the commutation relation for \mathbf{x} and \mathbf{y} projections of angular momentum operator $\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}$.
4. Is it possible measure simultaneously the \mathbf{x} and \mathbf{z} projections of angular momentum? Why? Proof.
5. Is it possible measure simultaneously square of angular momentum and its \mathbf{z} projections of angular momentum? Why? Proof.
6. Is it possible measure simultaneously square of angular momentum and its \mathbf{x} projection? Why? Proof.
7. Is it possible measure simultaneously absolute value of angular momentum $|\vec{L}|$ and its \mathbf{x} projection? Why? Proof.
8. Write an expression for the \mathbf{x}, \mathbf{y} and \mathbf{z} projection of circular frequency operators $\hat{\omega}_{x}, \hat{\omega}_{z}, \hat{\omega}_{z}$ (The rotating body is sphere with mass \mathbf{M} and radius \mathbf{R}).
9. How can the angle between the angular momentum vector and the \mathbf{z}-axis be calculated in quantum mechanics? Calculate the allowed possible values of this angle for orbital quantum number l=1.
10. How in quantum mechanics can be calculated the angle between the angular momentum vector $\overrightarrow{\mathbf{L}}$ and the z-axis? Calculate the values of this angle for orbital quantum number $\mathrm{l}=1$ and magnetic quantum numbers $\mathrm{m}=-2$ and +1 .
11. How to calculate in quantum mechanics the kinetic energy of a rotating body with the moment of inertia I ? If body is an electron moving around nucleus in orbit with radius $10^{-10} \mathrm{~m}$. Calculate velocity of electron in this orbit if orbital quantum number $\mathrm{l}=5$ (NB! Electron is a point particle).
12. How to calculate in quantum mechanics the kinetic energy of a rotating body with the moment of inertia I ? If body is an electron moving around nucleus in orbit with radius $10^{-10} \mathrm{~m}$. Calculate the minimum possible non zero value of velocity of electron (NB! Electron is a point particle).
