
7  . 1 Harmonic vibration of 1d one atomic lattice (application of a quantum harmonic oscillator).  

We supposed that the lattice is one dimensional. All atoms are chemically identical.  The temperature of lattice is  

zero, it is means that atoms are fixed in the its own lattice nodes. 

As we shall subsequently learn, all the regularities obtained for this artificial one-dimensional model prove to be  

true for three-dimensional lattices as well. Very important to emphasize that atoms in this model can be displaced 

only along (not perpendicularly) the chain of atoms, we have longitudinal type of atomic vibrations.

The our  general  aim is  a  calculation  of  thermal  capacity  of  crystal  and dependence  of  thermal  capacity  on 

temperature. 

The total number of atoms in lattice equal to N, and we presume that this number is sufficiently large (the order of 

Avogadro's number 1023). For small deflections of atoms from their equilibrium positions the arising interaction forces 

may be considered quasielastic, i.e., proportional to the variation of the interatomic distance. The force acting on each 

atom is proportional to deflection of atoms from equilibrium position or  by the other words me can use the Hooke's  

law for calculation of this forces.   All atoms are numbered and un is a displacement of the atom  with number n from 

equilibrium position. We presume that nearest atoms are connected by spring with elastic constant  g.  So the total 

potential energy of the whole crystal  could  be written as follows:

V=1
2
g∑

n

(un−un−1)
2

(1)

In this equation  (un-un-1)  is an extending or compression of linear spring connecting two atoms with numbers n 

and n+1. This is a quite classical equation. The equation of motion or second Newton's law or the equation describing 

the dependence of displacement of n-th atom from equilibrium posititon  un on time is looks like so:

m⋅ak=m⋅ük=Fk , here m-  is mass of atoms. (2)

Fk - force acting on atom with number k. This force can be calculated from (1) with general expression:

Fk=−dV
duk

(3)

So for atom with number k the equation of motion is looks like so:

ük=
g
m

[uk+1−2⋅uk+uk−1] (4)

For calculation the force action on the atom with number k we need to taken into the account only two members 

of this sum included the deflections of this atom from equilibrium position (uk +1−uk )
2  and (uk−uk−1)

2  (we assume 

that in our model only the nearest atoms interact). In our case the total number of equations is equal to number of 

atoms. All equations are depend on each other. So we have a very complicated system of the second order differential 

equations. How to solve this problem? 



But if the forces acting between the atoms are linear (as in our case) so the solution of such problem is well 

known, this is a harmonic function or harmonic traveling wave propagating along the chain in the both directions.  I'll 

write the harmonic functions in exponential form. So we get:

uk (t )=
1

√2mN
⋅A⋅e i(ω t+qak ) , m-mass of atom and N-total number of atoms. (5)

Here A is a amplitude of given wave, ω is a cycle frequency, q-wave vector (it is well known that the length of 

this vector is equal to 
2 pi
λ ,  λ is a wave length) and a is a distance between nearest atoms.  Do not forget that the 

linear combination of the harmonic solutions is also a solution of the equation (4).  Or by the other words if we needto  

describe the  motion of  atom with number k, we have to take into the account total set of all possible harmonic waves.

uk (t )=
1

√N
⋅∑

q

Aq⋅e
i(ω t+qak ) .

 The q parameter can be used as an index for numbering different harmonic waves.  If we substitute the solution (5) 

into the equation (4) we will get :

−ω2⋅A⋅e i(ω t+qak)= g
m

( A⋅e i(ω t+qa(k+1 ))−2 A⋅ei (ω t+qak )+A⋅ei (ω t+qa(k−1)))

−ω2⋅eiqak= g
m

(ei (qa(k+1))−2ei (qak)+ei (qa (k−1)))  

−ω2= g
m

(eiqa−2+e−iqa)  

ω2=2g
m

(1−cos(qa))

ω2=4 g
m

⋅sin2( qa
2

)  

after replacement ω0=√ 4 g
m

 we have:

ω(q)=ω0⋅|sin( qa
2

)| (6)

So we got the dependence of the cyclic frequency on the wave vector or so called  dispersion relation (Figure 1). 

Due to the periodicity of frequency (sine function), it is not sense to take into the account all possible values of wave 

vector  but  only  nonequivalent  values  of  wave  vectors  located  in  the  interval  from  0 to  2π (figure  2) or  more 

symmetrical option  (figure 3).



It is clear that  ω(q)=ω0⋅|sin( qa
2

)|=ω0⋅|sin((q+ 2πn
a

)a

2 )|=ω(q+ 2πn
a

) ,here n is any integer number. .

For displacements (5) we have the same result:

uk (t )=
1

√N
⋅A⋅ei (ωt+qak )= 1

√N
⋅A⋅e

i (ω t+(q+2πn
a

)ak)
= 1

√N
⋅A⋅e i(ω t+qak)e i(2⋅π⋅n⋅k) , here nandk∈Z

Now we can use equation (5) to describe the vibration of any atom in crystal, but before that it is necessary to  

determine  the  value  of  the  wave  vectors  q. How to  calculate  it?  We  use  for  this  aim  the  periodic  boundary 

conditions,  it  means that the atoms with number  k and  k+N are the same atoms. Mathematically it's means that 

displacement of the atoms k and k+N from the  equilibrium position are equal:

uk=uk+N (7)

After applying the  equation (5) :

uk (t )=
1

√(N)
⋅A⋅ei (ωt+qak )= 1

√(N )
⋅A⋅eiω t⋅eiqak= 1

√(N)
⋅A( t)⋅e iqak

(8)

Afte substitution one  into the equation (7) we get:

e iqka=e iq(k+N)a

A little simplification give:

e iqNa=1

This is possible if q⋅N⋅a=2⋅pi⋅n ,here   n∈Z   and  q=2 pi
N a

n=2 pi
L

n  here, L — total length of 1d crystall. If we 

take into account figure 3  the non equivalent values of wave vector located in the range  [ −π
a

 , π
a

] and could be 

calculated as follows: 

q=2 pi
L

n ,andn∈[− N
2
,+ N

2
] (9)

As you see the wave vector q is discrete parameter which have N valid different values in the range from  − π
a

 to π
a

 

with step Δq=2 pi
L

 . 
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This replacement is needed to eliminate an 
explicit time dependency.



The wave vector can be interpreted as the order number of a harmonic wave propagating in a  1d chain of atoms. 
The total number of distinct, nonequivalent harmonic waves is equal to N (a large but finite number). Once the wave 
vector is determined (take it from (9)), we can calculate the frequency of the corresponding wave using (6). And at the  
last stage, we can calculate the displacement of any atom in the chain that participated in the creation of this harmonic  
wave using (5).

An important note: if we want to calculate the real displacement of the k atom, we need to take into account the 
combination of all harmonic waves. Each atom participates in the creation of all harmonic waves at the same time:

uk (t )= ∑
q=− π

a

+π
a

1

√(N )
⋅Aq⋅e

i (ω (q )t+qak ) ,   here (10)

Aq- is an amplitude of harmonic wave for cooresponding wave vector q. Total number of terms of this sum is N.
Now i want to calculate the useful function , density of vibrations which definition is:

g(ω)= dn
dω (11)

The physical meanings is the number of harmonic waves with frequencies in the range from ω to ω+dω. The integral 

∫
ω1

ω2

g(ω)=n12  is equal to number of harmonic waves in region of frequency from ω1 to ω2.

We start from equation (9) q=2 pi
L

n . The differentiation give : 

dq=2 pi
L

dn (12)

Or for dn:

dn= L
2π

dq (13)

After replacement to  (11):

g(ω)= L
2π

dq
dω

= L
2π

1
dω
d q

(14)

Derivative 
dω
d q

 can be calculated from (6):

dω
d q

=
ω0⋅a

2 |cos ( qa
2

)| (15)

Substitution to the (13) give:

g (ω)= L
2π

d q
dω

= L
2π

2

ω0⋅a|cos (qa
2

)|
= L

πa
1

ω0|cos (qa
2

)|
= L

πa
1

ω0 √1−sin2( qa
2

)
=N

π
1

√(ω0
2−ω2) (16)

It is make sense to correctly normalize this function. We know that:

∫
0

ω0

g(ω)=N≠ N
π ∫

0

ω0

1

√(ω0
2−ω2)

=N /2 .



It means that we need take into the account both branches 
(left and right on figure 3 ) and multiply (16) to 2.

G(ω)=
g(ω)
N π
ω0

The graphic of  function you can see on figure 4.
There is a useful formula that can be used to further 

simplify the calculation of specific physical properties of 
crystals.

dq= L
2π

g(ω)dω (17)

So, now we are ready to start the calculation of heat 

capacity of the one dimensional artificial crystal from the 

point of view of classical physics.

The first assessment for heat capacity can be done with a very simple classical approach. From the classical 

point of view if the total number of atoms is  N and lattice is one dimensional, in this case the total number of the 

degrees of freedom is equal to N (1 for each atom, we assume that there is only longitudinal displacements of atoms 

along the chain of atoms). If the temperature of crystal is not  zero, so the average thermal kinetic energy associated 

with one degree of freedom is equal  
kT
2

 and the total  thermal kinetic energy of whole crystal is equal to 
kTN

2
. The 

average  kinetic and potential energies associated with thermal motion are equal. It means that  the total internal 

energy of the crystal is equal to kTN. So as you see we can calculate the heat capacity of lattice (need to calculate the 

derivative with respect to temperature T) and we get simple kN. The result do not depend on the temperature.  This 

result is conflicting with the experimental data. Experiment show that for low temperature the heat capacity have a  

very strong dependence on temperature and proportional to Tn, here n is the dimension of crystal.

But what give us the quantum mechanical approach ? We start from the exact calculation of internal energy of the  

crystal.  The classical formula for calculating the internal energy  of crystal is look like so:

E=Ekin+Epot=
1
2
m∑

k

u̇k
2+ 1

2
g∑

k

(uk−uk +1)
2 , summation over the all atoms. (18)

The calculation of kinetic energy give:

Ekin=
1
2
m∑

k

u̇k
2=1

2
m∑

k

u̇k⋅u̇k
*

(19)

After using (8) we have:

Ekin=
1
2
m∑

k

u̇k⋅u̇k
*= 1

2N
m∑

k
∑
q

Ȧq e
iqka∑

q '

Ȧq '
* e−iq ' ka

(20)

After reordering of summation:

Ekin=
1
2
m∑

k

u̇k⋅u̇k
*= m

2N ∑
qq '

Ȧq Ȧq '
* ∑

k

e−i(q−q ' )ka
(21)

The last sum in (21) could be represented by delta function:

G
(ω

)

ω/ω
0

figure 4



∑
k

e−i (q−q ')ka=δqq '⋅N

if q≠q '  then e−i (q−q ')ka is a fast oscillating function and corresponding sum is equal to zero.

(22)

After simplification we have:

Ekin=
1
2
m∑

k

u̇k⋅u̇k
*=1

2
m∑

q

Ȧq
2

(23)

As you see , in comparison with (19), the summation over the atoms is replaced by the summation over the wave 
vectors.

By the same way for potential energy: 

Epot=
1
2
g∑

k

(uk−uk+1)
2=1

2
g∑

k

(uk−uk+1)⋅(uk−uk+1)
*=1

2
g∑

k

(uk⋅uk
*+uk+1⋅uk+1

* −uk+1uk
*−uk⋅uk +1

* ) (24)

The corresponding amounts can be calculated separately (prove it!):

g
2∑k

uk⋅uk
*=g

2 ∑
q

Aq
2     

g
2∑k

uk +1⋅uk+1
* =g

2∑q
Aq

2   
g
2∑k

uk +1uk
*=g

2∑q
Aq

2⋅eiqa    
g
2∑k

uk⋅uk+1
* = g

2∑q
Aq

2⋅e−iqa

After the substitution to (19) we will get:

Epot=
2g
2 ∑

q

Aq
2 (1−cos (qa))=m

2 ∑
q

4 g
m

Aq
2sin 2(qa

2
)    and after using (6)=1

2∑q
mω2(q)⋅Aq

2

Finally for total energy of vibrating crystal:

Etot=∑
q

1
2
(m Ȧq

2+mω2(q)⋅Aq
2) (25)

Does this equation remind you of something? This equation means that we can represent the lattice vibration as a  

vibration of the set of independent  harmonic oscillators, and each oscillator is associated with  one harmonic wave  

with specific wave vector  q. The total number of such oscillators is  N, and the wave vector is the number of the 

oscillator. But if so, we can use an exact quantum mechanical expression for the energy of harmonic oscillators. So:

Etot=∑
q

(ℏ⋅ω(q)⋅(nq+
1
2
)) (26)

For a nonzero temperature value, it is necessary to take into account the filling of the upper energy levels for each  
harmonic oscillator. To do this, we must use the average value for quantum numbers nq described by the Bose-Einstein 
distribution:

n̄q=
1

e
ℏω(q )
kT −1

(27)

After substitution to (26) and ignoring of zero point energy:



Ētot=∑
q

ℏω(q)

e
ℏω(q )
kT −1

(28)

Summation over the q-vector can be replaced by integration using the following standard relations:

∑
q

...→ V

(2π)3∫
q

...dq3  -for 3d space and 

∑
q

...→ L
(2π)∫q

...dq−for 1d space, here V and L are volume and length of crystal .

Now for total energy we have:

Etot=
L

2π ∫
−π/2

π /2 ℏ ω(q)

e
ℏω (q )
kT −1

dq= L
π ∫

0

π /2 ℏω(q)

e
ℏω(q)
kT −1

dq (29)

after using (17) and (16) :

Etot=
2N
π ∫

0

ω0

ℏω

√(ω0
2−ω2) (e

ℏω
kT −1)

dω , here ω0=√ 4 g
m (30)

The heat capacity for a fixed volume can be calculated as a derivative of the total energy with respect to temperature:

C v=
dEtot

dT
=

2N
π ∫

0

ω0 (ℏω)2⋅e
ℏω(q)
kT

√(ω0
2−ω2)(e

ℏω
kT −1)2

⋅kT 2

dω (31)

Using new variable x=ℏω
kT

 give :

C v=kN
2
π∫

0

x0

x2⋅ex

√(x0
2−x2)(ex−1 )2

dx , here  x0=
ℏω0

kT
=

h ν0

kT
 (32)

For one mole of atoms N=NA we have kNA=R. On figure 5 
you can see the result of calculations of specific heat for 
two different values of ν0. For high temperatures, Cv tends 
to the classical limit R.

It is well known, from the theory of elasticity, that 
the speed of propagation of sound impulses in a solid rod 
v 0=√E / ρ . 

For chain of  atoms ρ=m
a

  and Young modulus  :

E= tention force
relative extension

=
g⋅(uk−uk−1)
|uk−uk−1 | /a

=g⋅a

from where do we get  v0=a⋅√ g
m

. 

C
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R

T(K)

ν
0
=1 THz

ν
0
=10 THz

figure 5



There  are  two different  types  of  speeds  describing  propagation  of  waves  in  matter,  phase  velocity (velocity  of 

harmonic wave with fixed q)  v p=
ω
q

and  group velocity (the rate of energy transfer in the crystal)  v g=|dω
dq | . For 

chain of atoms: v p=v0|sin
aq
2

aq
2

|  and v g=v0|cos
aq
2 | .  For small wave vectors(very long wave limit)  vp=vg=v0.

On figure 6 presented the the dependence of group and 
phase velocities on wavevector.
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