
6. Harmonic oscillator

In classical physics if we consider the parabolic potential energy (parabolic potential well)  U = kx2/2
(elastic force F = - kx elastic forc potential energy), we get harmonic oscillations. Frequency is equal to
ω  = √k/m , where M is the mass of oscillating body. Classical energy of oscillations is continuous.

Every  body oscillating  harmonically  is  called  harmonic  oscillator.  Harmonic  oscillator  has  several
applications  (small  oscillations  in  twoatomic  molecule,  in  crystal  atoms  oscillate   and  so  on).  In
microworld the behaviour of harmonic oscillator is quite different from the classical one: energy is
discrete and the probability disribution is different from the classical one. Next we prove it solving the
corresponding Schrödinger equation. As we see, it is quite complicated procedure, since the differential
equation we have is different from those used in classical physics.

We have the following potential energy

U ( x )=
mω2 x2

2
.

Next we must solve the Schrödinger equation

−
ℏ2

2 m
d2 ψ ( x )

dx2
+

mω2 x2

2
ψ ( x )=E ψ ( x )  .

6.1 Change of variables. In order to solve that equation there are several standard steps to follow. The 
first one is to change variables and write the equation with less constants. In our case we define 
variables

ξ=√ m ω
ℏ

x , λ=
2E
ℏ ω

 

and write our equation as

−
d2ψ (ξ )

dξ2
+ξ2ψ (ξ )=λ ψ (ξ )      or     −ψ ' '

(ξ )+ξ2 ψ ( ξ )=λ ψ ( ξ )  .

6.2 Asymptotical solution. Since the variable ξ is not restricted we must find out whether there exist
finite solutions if the variables tend to infinity. If |ξ|→ ∞ , we demand that ψ (ξ ) → 0 .

If |ξ | >> λ , we have the Weber equation −ψ ' '
(ξ )+ξ2ψ ( ξ )=0 .The exact solution of one is the so-

called parabolic cylinder function. Asymptotically (for ξ→∞ ) this function gives:

ψ (ξ )=f 1(1/ξ )e
−

ξ2

2 + f 2(1/ξ )e
ξ2

2  .

 The part exp(ξ2
/2 ) should be excluded due to the singularity at infinity. 

6.3 Power series. Having asymptotical solution (we use only the exponential part of the asymptotical
solution} we next try to find the general solution in form

ψ (ξ )=ν (ξ ) e
−

ξ2

2  ,



where  ν ( ξ )  is  some  new  function  we  must  find.  Substituting  the  above  given  solution  to  our
Scrödinger equation we for ν ( ξ )  get the following differential equation

ν ' '
−2 ξ ν '

+( λ−1) ν=0  .

Next we assume, that ν ( ξ )  is expressed as a following power series function

ν ( ξ )=∑
r=0

ar ξr  .

Whether the serie is finite or infinite, we analyse later. Calculating derivatives

ν '
(ξ )=∑

r=0

rar ξr−1

and
ν ' '

(ξ )=∑
r=0

r (r−1)ar ξr−2
≡∑

s=0

(s+2)( s+1 )as+2ξs  ,

(we changed r to s = r-2). After substitution to our differential equation, we get

∑
r=0

(r+2)(r+1 )ar+2 ξr
−2∑

r=0

rar ξr
+( λ−1 )∑

r=0

ar ξr
=0  ,

i.e.

∑
r=0

((r+2 )(r+1)ar +2−2 r ar+( λ−1 )ar ) ξr
=0

Taking the term before ξr  equal to zero, we have

ar +2=
2r+1−λ

(r+2 )(r+1)
ar  .

We got the formula to calculate the coefficients  ar .  One of the solutions is  given by even series
function

a0≠0 and a1=0  ,
and other by odd series function

a1≠0 ja a0=0  .

Now we analyse the large  ξ  behaviour of  ν ( ξ ) . When  ξ → ∞  we see that  ν ( ξ ) → ∞  and has

identical limiting behavior as eξ2

. For large ξ  we have
ar+2

ar

≈
2
r

 ,

which is the same as for eξ2

 .

Therefore at large values of ξ

ν (ξ )≈eξ2

 

and ψ (ξ )=ν (ξ ) e
−

ξ2

2  is not finite. Therefore the power series function must be finite. It means that
serie terminates on some value n (in other words we have polynomials)

an≠0 ja an+2=0  .



From an+2=
2n+1−λ

(n+2 )(n+1)
an=0  we get that

λ=2 n+1 , (n=0 , 1 , 2 , .. .) .

We got the first important result: to avoid infinities the parameter  must be discrete and must have
the above given values.

6.4 Energy. Since the parameter  λ  was related with energy, we get that the only possible energy
values for harmonic oscillator are as follows

En=ℏω (n+
1
2

) , n=0 , 1, 2 , .. .  .

Therefore the energy of quantum oscillator is discrete, difference between the neighbour levels is equal
to . The minimal energy is nonzero

E0=
ℏω
2

 ,

therefore the quantum oscillator always „moves“ and cannot be at rest.

6.5 Eigenfunctions.  Next we try to find eigenfunctions corresponding to the energy  En  . For each
λ=2n+1  we get certain polynomial which is called Hermite polynomial

νn (ξ )=H n(ξ )  .

Hermite polynomials are solutions of the following differential equation

Hn
' '
(ξ )−2 ξ Hn

'
(ξ )+2 nHn( ξ )=0  .

Eigenfunctions are expressed as

ψn( ξ )=An H n(ξ ) e
−

ξ2

2  ,
or using the variable x

ψn( x )=An Hn(√mω
ℏ

x ) e
−

m ω x2

2ℏ  .

 is normalization constant.

6.6 Some properties  of  Hermite polynomials. Before going to calculations we write  down some
useful properties of Hermite  polynomials.  It  appears that our calculations simplify if  we introduce
certain helping function which is called the generating function. It is defined as follows

F( s , ξ )=e− s2
+2 sξ≡eξ2

− (s−ξ )
2

 .
The use of generating function is that it should be expressed, using Hermite polynomials, as follows

F( s , ξ )=∑
n=0

∞ Hn(ξ )

n !
sn  .

In order to prove it we at first give some useful relations for F( s , ξ )  . Calculating



∂ F
∂ s

=− 2(s−ξ ) e− s2
+2sξ≡2(ξ −s )F

and
∂ F
∂ ξ

=2 s e− s2
+2 sξ≡2 sF  

we see that F( s , ξ )  satisfies the following differential equation

∂ F
∂ s

+
∂F
∂ξ

=2ξ F  .

Calculating 
∂

2 F
∂ ξ2

=4 s2F  

we see that F( s , ξ )  satisfies the following second order differential equation

∂
2 F

∂ ξ2
−2ξ

∂ F
∂ξ

+2 s
∂ F
∂ s

=0  .

Proof. Now we shall prove that the power series expansion of F( s , ξ )  also satisfies the above given
differential equation. Calculating derivatives

∂2 F

∂ ξ2
=∑

n=0

∞ Hn
' '
(ξ )

n !
sn ,

∂F
∂ ξ

=∑
n=0

∞ H n
'
(ξ )

n !
sn ,

∂ F
∂ s

=∑
n=0

∞ Hn(ξ )

n !
nsn−1

and substituting them to differential equation, we get

∑
n=0

∞ sn

n !
(Hn

' '
−2ξ Hn

'
+2 nHn )=0  .

The left side is identically equal to zero, if and only if  are Hermite polynomials.

Next we derive the general expression for calculating Hermite polynomials. It is possible to verify that

Hn( ξ )=[ dn

dsn
F ( s , ξ )]

s=0

≡[ dn

dsn
eξ2

−( s−ξ )
2

]
s=0

=

=eξ2

[ dn

dsn e− (s−ξ )
2

]
s=0

¿(− 1 )
n eξ2 dn

dξn (e− ξ2

)  ,

which gives

Hn( ξ )=(− 1 )n eξ2 dn

dξn ( e− ξ2

)  .

(here the coefficient before ξn  is always 2n ).

Some examples
H0( ξ )=1 , H1(ξ )=2ξ , H2(ξ )=4 ξ2

−2 ,

H3( ξ )=8 ξ3
−12 ξ , H4(ξ )=16 ξ4

−48 ξ2
+12  .

Some useful relations



Hn
'
( ξ )=2 nHn−1(ξ ) , ξ H n(ξ )=

1
2

H n+1(ξ )+nH n−1(ξ )  .

6.7  Normalization  of  eigenfunctions. Let  us  prove  that  eigenfunctions  are  orthonormal  and  find
normalization coefficient An . Consider the integral

∫
−∞

+∞

ψm∗(x ) ψn( x ) dx  .

Going to variable  and using the general expressions of eigenfunctions via Hermite polynomials, we
get

∫
−∞

+∞

ψm∗(x ) ψn( x ) dx=Am∗An √
ℏ

mω
∫
−∞

+∞

Hm(ξ ) Hn( ξ ) e− ξ2

dξ  .

In the next paragraph we prove that

∫
−∞

+∞

Hm(ξ ) Hn (ξ ) e− ξ2

dξ={√π 2n n ! , if m=n ,
0 , if m≠n .

 

If m  n , the integraal is zero, therefore the different eigenfunctions are orthogonal.

If m = n we normalize the function to 1. We have

|An|
2√

ℏ

mω
√π 2n n! =1  ,

which gives (we choose An  to be real)

An=√ √mω

√π ℏ2n n!
≡(

mω
ℏ

)1/4 1

√√π 2nn !
 .

Eigenfunctions in a final form are

ψn( x )=(
mω
ℏ

)1/4 1

√√π 2n n!
Hn(√ mω

ℏ
x ) e

−
mω x2

2ℏ  .

Some special cases.a.) 

The ground state (n=0).

E0=ℏω/2 ,   ψ0( x )=(
mω
π ℏ

)1/4 e
−

mω x2

2 ℏ  .

Behaviour of quantum oscillator is different from the
classical one. Probability density is maximal in centre
(equilibrium  point)  and  is  nonzero  outside  the
classsical region.

ψ2

ψ



b.) First exited state (n=1). E1=3ℏω /2  and

ψ1( x )=(
mω
ℏ

)3/4(
4
π

)1/4 x e
−

mω x2

2ℏ  .

Behaviour of quantum and classical oscillators are also
different.

c.) State with principal quantum number n = 10.
The  classical  and  quantum  oscillators  behave

differently,  but in the case of large  n we see that the
average  of  quantum  probability  distribution  is
practically  equal  to  the  probability  of  classical
oscillator.  That is the general result, since in the limit
of large quantum numbers we have the same results as
in classical physics.

On  graphics  ξ=√ m ω
ℏ

x  and  used  dimensionless

wave function   
ψ

(
mω
ℏ

)3 /4
.

PS! 
Formally the density of probability for particle ( ψ

2 ) can be calculated in the framework of classical
physics too.  The probability to find particle in side of region of coordinate [x,x+dx] can be calculated
as follows:

dP=ρ(x )dx .
The corresponding probability dP can be calculated
by this way  dP=dt/T here, dt -  the duration of the
particle's stay inside the coordinate interval [x,x+dx]
and T-period of vibrations:

2 dt
T

=ρ( x)dx .

The  coordinate  for  classical  harmonic  oscillator
depend on time as follows:

ψ

ψ2

ξ

ξ

ξ

ρ

ψ

ψ2



x (t)=acos(
2π

T
t ) .

The expression for time give:  t=
T

2 π
arccos(

x
a
) and derivative dt=

T
2π

1

√a2
−x2

.

After substitution to  for  classical density of probability we will get:

ρ(x)=
1
π

1

√a2
−x2

 .

The graph of the corresponding classical probability is shown in the figure.

For comparison, the calculation results 
are presented for n = 100.

7. Harmonic oscillator (some usefull integrals)

Here we discuss how to calculate integrals. For each special case there are certain rules and
procedures how to do it.

In the previous paragraph we used the integral 

∫
−∞

+∞

Hm(ξ ) Hn (ξ ) e− ξ2

dξ={√π 2n n ! , if m=n ,
0 , if m≠n .

 

Here we demonstrate how it is calculated. The general principle is that using the generating function we
try to find such a integral,  which is  expressed through the above given integrals.  In our case it  is
integral 

∫
−∞

+∞

F (s , ξ ) F ( t , ξ )e− ξ2

dξ  .

We write it down using the direct expressions of generating functions (left hand side of the following
equality)  and  next  using  the  expression  via  the  Hermite  polynomials  (right  side  of  the  following
equality)

∫
−∞

+∞

e− s2
+2 sξ− t2+2tξ− ξ 2

dξ=∑
m=0

∞

∑
n=0

∞

∫
−∞

+∞ Hm(ξ )Hn(ξ )

m! n!
sm tn e− ξ2

dξ  .

x/a

ξ

ψ

ψ2



As we see, on the right side there are just the integrals we try to calculate. We now must calculate the
integral on the right side (which in principle simple,  since we must integrate exponents) and then
expand the result as series on s and t.

The left hand side integraal gives us

∫
−∞

+∞

e− s2
+2 sξ−t2

+2tξ− ξ2

dξ=e2 st ∫
−∞

+∞

e−( ξ− s−t )2 dξ= e2 st ∫
−∞

+∞

e− u2

du=√π e2 st  .

(We changed the variable: u=ξ−s−t  and used the integraal ∫
0

∞

e− r2 x2

dx=√π
2 r

, r > 0  .)

Expanding the result as series on s and t, and demanding that it is equal to the right side, we get

 .

Comparing the expressions  on the left  and right  side we obtain the integrals  we have used in  the
previous paragraph.

Next we give three more useful integrals (proofs are given in Appendix).

First integral.

∫
−∞

+∞

ψn

dψm

dx
dx={√

Mω
ℏ √ n+1

2
, if m=n+1 ,

−√ Mω
ℏ √ n

2
, if m=n−1 ,

0 , if m≠n±1. 

Second integral.

Third integral.



Example 1. Mean value of energy. Mean value of potential energy for state  . Using the third
integral, we get

<U >n=∫
−∞

+∞

ψn( x )
Mω2 x2

2
ψn( x ) dx=

Mω2

2
∫
−∞

+∞

x2 ψn
2( x ) dx=

ℏω
4

(2 n+1 )≡
En

2
 .

The result is the same as in the classical case.

Since the energy operator is a sum of operators of kinetic and potential energy

Ĥ=T̂ +U  ,

we without calculations can say that also

<T >n=
En

2
 .

(Always  ).

Since , we find the mean value of momentum square.

<T >n=
1

2 M
< p2 >n=

En

2
 ,

therefore

< p2>n=M En=
M ℏω

2
(2 n+1 )  .

Example 2. Uncertainty relations for oscillator. At first we demonstrate that

 ,

 .

First result follows from tha fact that under the first integral there is always an odd function, the second
follows from our first integral.

Next we  deal with root mean square deviation

( Δx )
2
≡<( x−< x> )

2 >=< x2
>−<2x< x>>+<< x>

2>≡<x2>−2< x>2 +< x>
2 =

=< x2 >−< x>2  .

Since < x >n=0  and using the third integral, we get

( Δx )n
2 =< x2

>n=∫
−∞

+∞

x2ψn
2
(x ) dx=

ℏ

2 Mω
(2n+1 )  .

Above we find that



 .

Therefore we have

( Δx )n
2( Δp )n

2=
ℏ

2

4
(2n+1)2  ,

and the standard form of uncertainty relations is

Δxn⋅Δpn=
ℏ

2
(2n+1)  .

For the ground state n = 0 it is minimal

Δx⋅Δp=
ℏ

2
 ,

for other states it increases linearly on n. Here we see that the minimal value of products of uncertinties
is indeed , but mostly it is greater.

Appendix:

1. First integral. Expressing it with the help of Hermite polynomials we have

∫
−∞

+∞

ψn( x )
dψm( x )

dx
dx=∫

−∞

+∞

ψn(ξ )
dψm(ξ )

dξ
dξ=

=An Am ∫
−∞

+∞

H n(ξ ) e
−

ξ2

2 d
dξ

( Hm( ξ ) e
−

ξ2

2 ) dξ

We calculate the next integral using the following combination of generating function.

∫
−∞

+∞

F (s , ξ ) e
−

ξ2

2 ∂
∂ ξ

( F (t , ξ ) e
−

ξ2

2 ) dξ=∫
−∞

+∞

e
− s2+2 sξ−

ξ2

2 ∂
∂ξ

(e
−t2+2 tξ− ξ2

2 ) dξ=

=∫
−∞

+∞

e−s2
−t2−ξ2

+2 sξ+2tξ(−ξ+2t ) dξ =e2 st ∫
−∞

+∞

e−( ξ− s−t )2 [−(ξ−s−t )+ t−s ] dξ=

=( t−s ) e2 st ∫
−∞

+∞

e−(ξ−s−t )2 dξ =√π ( t−s ) e2 st  .

Next we express these integrals using Hermite polynomials

∫
−∞

+∞

F (s , ξ ) e
−

ξ2

2 ∂
∂ ξ

( F (t , ξ ) e
−

ξ2

2 ) dξ=∑
n=0

∞

∑
m=0

∞ sn tm

n! m! ∫
Hn(ξ )e

−
ξ2

2 d
dξ

[ Hm(ξ )e
−

ξ2

2 ] dξ=

=√ π ( t−s ) e2 st=√ π ( t−s ) ∑
n=0

∞ (2 st )n

n!
=√ π∑

n=0

∞ 2n
(sn t n+1

−sn+1 tn
)

n!
 .

Comparing the expressions of both series, we get as a final result 

∫
−∞

+∞

Hn( ξ ) e
−

ξ2

2 d
dξ

[H m(ξ )e
−

ξ2

2 ] dξ={
√ π 2n

(n+1 )!, m=n+1
−√π 2n−1 n !, m=n−1

0 , other cases



Substituting the normalisation coefficient, we get the first integral.

2. Second integral. That integral is calculated without the generating function. We use the properties of
Hermite polynomials and express  as a superposition of other polynomials

∫
−∞

+∞

ψn( x ) x ψm(x ) dx=
ℏ

Mω
An Am ∫

−∞

+∞

H n(ξ ) ξ Hm(ξ )e−ξ2

dξ=

=
ℏ An Am

Mω
∫
−∞

+∞

Hn(ξ )(
1
2

Hm+1(ξ )+mHm−1 (ξ ))e−ξ2

dξ=

=
ℏ An Am

Mω {1
2
∫
−∞

+∞

H n (ξ ) Hm+1( ξ ) e−ξ 2

dξ +m∫
−∞

+∞

H n(ξ ) Hm−1(ξ ) e−ξ2

dξ}  .

To obtain the final result we must use integrals we calculated at first.

3. Third integral. Third integral

∫
−∞

+∞

ψn( x ) x2 ψm( x ) dx=(
ℏ

Mω
)

3
2 An Am∫

−∞

+∞

H n(ξ ) ξ2 Hm(ξ ) e−ξ2

dξ  

is calculated with the help of generating function. We start with the integral 

∫
−∞

+∞

F (s ,ξ ) F ( t , ξ ) ξ2 e−ξ2

dξ= e2 st∫
−∞

+∞

e−(ξ−s−t )2 ξ2 dξ=√π e2 st [1
2
+( s+t )2]=

=√ π {∑
n=0

∞ 2n (sn+2 tn+sn tn+2 )

n !
+∑

n=0

∞ 2n−1 sn tn(2 n+1)

n! }  .

On the other hand

∫
−∞

+∞

F (s ,ξ ) F ( t , ξ ) ξ2e−ξ2

dξ=∑
n=0

∞

∑
m=0

∞ snt m

n!m!
∫
−∞

+∞

H n(ξ ) Hm(ξ ) ξ2 e−ξ2

dξ  ,

which finally gets

∫
−∞

+∞

Hn (ξ ) Hm(ξ ) ξ2 e−ξ2

dξ={
√π 2n−1 n !(2n+1) , m=n

√π 2n
(n+2) ! , m=n+2

√π 2n−2 n! , m=n−2
0 , other cases

  

and leads to third integral.


