5.1 Infinite potential well. At first we deal with case U - oo (infinite well). In that case we have ¢,=y,=0,

i.e. particles may move only in region, where U = 0. It is the free particle case and the general solution of Schro-
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dinger equation h—z/;" Ey is:
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0 a x Initial conditions are ¢,(0)=y,(a)=0 and we get
A+B:O, Aeika+Be-ika :0.

From the first one B = - A and after substitution to the second one we have
A(e™ - e” ™) =2iAsin(ka) =
Since A # 0 (otherwise ;=0 and there are no particles at all), we have
sin(ka) =0

from which
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2 (n = 0 is not allowed, since it gives k = 0 and ¢, =0). Substituting k we
\"N obtain that the energy in infinite well is discrete
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(In classical well energy is continuous O =E < oo )

Orthonormed wave functions are

E, Lyn(x)zi\/z sin L X
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Lowest energies and corresponding probability distribution:
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The wavefunctions are form the set of orthonormal functions. We can check it by calculation of corresponding
integral:
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dx mustbeequalto J,, Prove!
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It is important to understand that the eigenfunctions for stationary states are standing waves. We have self-
interfering wave functions reflected from the walls of the potential well. And only a stable result of this
interference is realized as a stationary state.

Additionally, we can calculate the average values of the coordinate and momentum of the particle.
Additional tasks:

Show that:

1) (x),=J wxy,dx =0,
0
(pon=] vy wdx =0
0
3.) Calculate the mean of the squared coordinate <x2>n=f Y Xy dx  =?
0

4.) Calculate the mean of the squared momentum (p>), :f Y poydx  =?

Some tabular expressions:
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[ xsin®(x) dx =" (X——l)-sin(zx)_&(zx)
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fxsinz(x)dxzx_z_X'Sin(ZX)_Cos(zx)
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| xcos(x)dx=cos(x)+x-sin(x)

2sin()-sin (B)=cos (a— ) —cos( a+ /)



