
9. Harmonic oscillator (representation of filling numbers)

1. Harmonic oscillator. Next we shortly discuss the representation of harmonic oscillator using
raising and lowering(creation and annihilation) operators. That method is used in quantum field
theory where the quantum field is interpreted as some set of microparticles. 
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Direct calculation gives that â  and â  satisfy the following commutation relation

[ â , â+ ]=1  .

To prove this expression we can present firstly â operator in next form: 
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The commutation operator  [x , p̂ ]=i ℏ after substitution we have: [ â , â+ ]=1 .
Operators â  and â  are not Hermitean, but are conjugated to each other. Direct calculations 
demonstrate that applying them to eigenfunctions, the results are

âψn(x )=√n ψn−1 (x )  ,
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We can prove the correctness of first integral as follows. Firstly I can multiply the first integral on 
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The left integral is equal:
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Here we see that operator â  acting on state ψn( x )  with energy En  leads to state ψn−1 ( x )  with

energy En−1=En−ℏω  and operator â+  similarly to state ψn+1( x )  with energy En+1=En+ℏω .
Therefore they are lowering and raising operators (in  quantum field theory these operators  are
called annihilation and creation operators). 

Using operators â  and â  the Hamiltonia operator is expressed as
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Using commutation relations ( 1ˆˆˆˆ   aaaa ) it is also expressed as
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treat the radiation as a systems of particles (similarly, as A. Einstein interpreted electromagnetic
radiation as a set of photons), we may interprete n as a number of particles or filling number and
then the operator 

aaN ˆˆˆ 

as a particle number operator, since N̂ ψ n=n ψn .  
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)
n
0=√n !⋅nor n=

1

√n !
( â*
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creation operator can be used to generate wave functions for any state based on the wave function 
for the ground state.
This approach is called "secondary quantization". An increase in the energy of a harmonic oscillator
can be interpreted as the creation or destruction of formal particles (in the case of vibrations) of
phonons. If the harmonic oscillator jumps from a level with a quantum number n = 2 to a level with
n  =  5  in  the  scheme of  this  approach,  we  can  say  that  3  phonons  with  energy  ℏ⋅ω  were
created.The transition from level with n=5 to level with n=2 means that 3 phonons were annihilated.
This formalizm is very useful to describe the vibration of atoms in crystals. If a photon is a quantum
of energy for  an electromagnetic  field,  the phonon is  a quantum of energy for  oscillations.  To
describe the vibration properties of crystals, the harmonic waves moving in the crystals can be

replaced by moving phonons, particles with a momentum p⃗=ℏ k⃗ .


