
6. Harmonic oscillator

In classical physics if we consider the parabolic potential energy (parabolic potential well) U = kx2/2
(elastic force  F = -  kx elastic forc potential energy), we get harmonic oscillations. Frequency is
equal to  k/M =  , where  M is the mass of oscillating body. Classical energy of oscillations is
continuous.

Every body oscillating harmonically is called harmonic oscillator. Harmonic oscillator has several
applications (small oscillations in twoatomic molecule, in crystal atoms oscillate  and so on). In
microworld the behaviour of harmonic oscillator is quite different from the classical one: energy is
discrete and the probability disribution is different from the classical one. Next we prove it solving
the corresponding Schrödinger equation. As we see, it is quite complicated procedure, since the
differential equation we have is different from those used in classical physics.

We have the following potential energy
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Next we must solve the Schrödinger equation
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6.1 Change of variables. In order to solve that equation there are several standard steps to follow. 
The first one is to change variables and write the equation with less constants. In our case we define
variables
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and write our equation as
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6.2 Asymptotical solution. Since the variable ξ is not restricted we must find out whether there
exist finite solutions if the variables tend to infinity. If  , we demand that 0)(  .

If    ,  we  have  0)()( 2   .  It  is  possible  to  verify  that  now  the  possible
approximate solution which tends to zero is
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Similarly the solution is also )2/exp( 2 , but it is unphysical since it infinitely increases. 

6.3 Power series. Having asymptotical solution we next try to find the general solution in form
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where  )(  is some new function we must find. Substituting the above given solution to our
Scrödinger equation we for )(  get the following differential equation
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Next we assume, that )(  is expressed as a following power series function
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Whether the serie is finite or infinite, we analyse later. Calculating derivatives
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(we changed r to s = r-2). After substitution to our differential equation, we get
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Taking the term before r  equal to zero, we have
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We got the formula to calculate the coefficients  ra . One of the solutions is given by even series
function
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and other by odd series function
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Now we analyse the large   behaviour of )( . When   we see that )(  and has
identical limiting behavior as 2e . For large   we have
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which is the same as for 2e  .
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that serie terminates on some value n (in other words we have polynomials)
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 we get that
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We got the first important result: to avoid infinities the parameter    must be discrete and must
have the above given values.

6.4 Energy. Since the parameter   was related with energy, we get that the only possible energy
values for harmonic oscillator are as follows
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Therefore the energy of quantum oscillator is discrete, difference between the neighbour levels is
equal to  . The minimal energy is nonzero
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therefore the quantum oscillator always „moves“ and cannot be at rest.

6.5 Eigenfunctions. Next we try to find eigenfunctions corresponding to the energy nE  . For each
12  n  we get certain polynomial which is called Hermite polynomial
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Hermite polynomials are solutions of the following differential equation
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Eigenfunctions are expressed as
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nA  is normalization constant.

6.6 Some properties of Hermite polynomials. Before going to calculations we write down some
useful properties of Hermite polynomials. It appears that our calculations simplify if we introduce
certain helping function which is called the generating function. It is defined as follows
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The use of generating function is that it should be expressed, using Hermite polynomials, as follows
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In order to prove it we at first give some useful relations for ),( sF  . Calculating
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we see that ),( sF  satisfies the following differential equation
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we see that ),( sF  satisfies the following second order differential equation
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Proof. Now we shall prove that the power series expansion of  ),( sF  also satisfies the above
given differential equation. Calculating derivatives
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and substituting them to differential equation, we get
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The left side is identically equal to zero, if and only if nH  are Hermite polynomials.

Next we derive the general expression for calculating Hermite polynomials. It is possible to verify
that
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which gives
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(here the coefficient before n  is always n2 ).

Some examples
,24)(,2)(,1)( 2

210   HHH

124816)(,128)( 24
4

3
3   HH  .

Some useful relations
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6.7 Normalization of eigenfunctions. Let us prove that eigenfunctions are orthonormal and find
normalization coefficient nA . Consider the integral
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Going to variable   and using the general expressions of eigenfunctions via Hermite polynomials,
we get
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In the next paragraph we prove that
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If m  n , the integraal is zero, therefore the different eigenfunctions are orthogonal.

If m = n we normalize the function to 1. We have
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which gives (we choose nA  to be real)
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Eigenfunctions in a final form are




24/1

2

)(
!2

1
)()(

xM

n
n

n ex
M

H
n

M
x











  .

Some special cases. Ground state.
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Behaviour  of quantum oscillator is  different from the
classical one. Probability density is maximal in centre
(equilibrium point) and is nonzero outside the classsical
region.

First exited state. 2/31 E  and
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Behaviour of quantum and classical  oscillators are
also different.

n = 10. The classical and quantum oscillators behave
differently, but in the case of large n we see that the
average  of  quantum  probability  distribution  is
practically  equal  to  the  probability  of  classical
oscillator.   That  is  the  general  result,  since  in  the
limit of large quantum numbers we have the same
results as in classical physics.



7. Harmonic oscillator (integrals)

Here  we  discuss  how to  calculate  integrals.  For  each  special  case  there  are  certain  rules  and
procedures how to do it.

In the previous paragraph we used the integral 
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Here we demonstrate how it is calculated. The general principle is that using the generating function
we try to find such a integral, which is expressed through the above given integrals. In our case it is
integral 
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We  write  it  down  using  the  direct  expressions  of  generating  functions  (left  hand  side  of  the
following equality) and next using the expression via the Hermite polynomials (right side of the
following equality)
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As we see, on the right side there are just the integrals we try to calculate. We now must calculate
the integral on the right side (which in principle simple, since we must integrate exponents) and
then expand the result as series on s and t.

The left hand side integraal gives us
















  stusttsstttss edueedeede 22)(222 22222
   .

(We changed the variable: tsu    and used the integraal 


 
0

0,
2

22

r
r

dxe xr 
 .)

Expanding the result as series on s and t, and demanding that it is equal to the right side, we get
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Comparing the expressions on the left and right side we obtain the integrals we have used in the
previous paragraph.

Next we give three more useful integrals (proofs are given in Appendix).
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Example 1. Mean value of energy. Mean value of potential energy for state )(xn . Using the third
integral, we get
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The result is the same as in the classical case.

Since the energy operator is a sum of operators of kinetic and potential energy

UTH  ˆˆ  ,

we without calculations can say that also

2
n

n

E
T   .

(Always nEH  ˆ  ).

Since 
M

p

dx

d

M
T

2

ˆ

2
ˆ

2

2

22




, we find the mean value of momentum square.



22

1 2 n
nn

E
p

M
T   ,

therefore

)12(
2

2  n
M

EMp nn


 .

Example 2. Uncertainty relations for oscillator. At first we demonstrate that
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First result follows from tha fact that under the first integraal there is always an odd function, the
second follows from our first integral.

Next we  deal with root mean square deviation
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Since 0 nx  and using the third integral, we get
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and the standard form of uncertainty relations is
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For the ground state n = 0 it is minimal
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for  other  states  it  increases  linearly  on  n.  Here  we see  that  the  minimal  value  of  products  of
uncertinties is indeed 2/ , but mostly it is greater.

Appendix:

1. First integral. Expressing it with the help of Hermite polynomials we have
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Next we express these integrals using Hermite polynomials
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Comparing the expressions of both series, we get as a final result 
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Substituting the normalisation coefficient, we get the first integral.

2. Second integral. That integral is calculated without the generating function. We use the properties
of Hermite polynomials and express )( nH  as a superposition of other polynomials
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To obtain the final result we must use integrals we calculated at first.

3. Third integral. Third integral
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is calculated with the help of generating function. We start with the integral 
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On the other hand
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and leads to third integral.




