
II.2.4 Completeness of eigenfunctions of Hermitean operators.

Eigenfunctions form a complete set of functions. In other words it means that if

we had some orthonormal system of eigenfunctions  φ1 ,φ2 ,φ3 , … of some Hermitean

operator  Â ,  then an any  function   can  be  presented as  linear  combination  of

eigenfunctions. We have the same situation with vectors in three-dimensional space.

Arbitrary three-dimensional  vector can be represented by a combination of three

basis  orthonormal  vectors.  The  basis  vectors  play  the  role  of  wave

functions(eigenfunctions), and an arbitrary vector is an arbitrary function in quantum

mechanics.


n

nnc ,φ      A⃗= i⃗⋅x+ j⃗⋅y+ k⃗⋅z 

Geometrical interpretation: eigenfunctions  nφ  is  treated as  a set of orthogonal unit

vectors of some vector space and nc  are treated as coordinates of   . 

where nc  are some numerical coefficients, obtained as

cn=∫φ
*
⋅ψ dV

Geometrical interpretation: eigenfunctions  nφ  is  treated as  a set of orthogonal unit

vectors of some vector space and nc  are treated as coordinates of   . 

Let us assume, that   is presented as

ψ =∑
n

c nφn

 .

To get mc  we find a scalar product with φm
*

 and use the orthonormality of 

cm=∫φ
*
⋅ψ dV .

II.2.  5 Physical meaning.   Let us give the physical meaning of sequence 


n

nnc φ , 

where    is  a  state  function  (wave  function)  of  some  particle  and  nφ  are

eigenfunctions of operator  Â  corresponding to some physical quantity  A (energy,

momentum, etc).



If  we  perform  measurements  of  A,  the  results  are  equal  to  the  eigenvalues
...,...,,1 naa . The probability of results depends on ...,...,,1 ncc . Namely – we get 1a

with probability  1c 2, 2a  with probability 2c 2, (and so on).

The sum of probabilities is equal to unity 

∫ψ*ψ dV =1=∑
m,n

cm
* c∫ φm

*
φ n dV≡∑

m,n

cm∗cn δmn=∑
n

|cn|
2 .

If, for example, our measurements give only one value an  of A then we have
nφ  , in other cases the value of A is not uniquely determined. If we have the state

 , which is expressed as

2211 φφ cc 

and A is, for example energy, then the measurements of energy give us as a result

two values: 1a  or 2a . 1a  has probability 1c 2, 2a  has probability 2c 2. It means that

in microworld there exist states where the energy (or some other physical quantity)

is not uniquely determined. Such states are more common that the states with a

fixed energy.

Comments, appendices:

1.  Operator, linear operator. Let us have some set of functions X. Operator is a

prescription,  which  for  every  function  Xf   sets  in  corrspondence  some  other

function Xg  (from the same set of functions, in other words it is a function of

functions). We denote it as Â  and write

g= Â f  .

In quantum mechanics we use only linear operators. By definition, linear operator 

satisfies the following two conditions

Â ( f 1 +f 2 )= Â f 1+ Â f 2  ,

fAaafA ˆ)(ˆ   ,

where Xfff ,, 21  and a ∈ C  is some number (real or complex).

The sum and product of operators. Sum



( Â + B̂ )⋅f=   Â f + B̂ f  ,

product

Â B̂ f=  Â ( B̂ f )  .

2. -function.δ-function.  1-dimensional case. -function (Dirac -function) is defined as followsδ-function. δ-function.

00)(,00)(  xifxxifx   

and

 baxifdxx
b

a

,01)( ∫  .

From the definition it follows, tha for arbitrary function f(x)

∫ 
b

a

fdxxxf )0()()(   ,

and

∫
a

b

f ( x ) δ ( x−c ) dx= f (c ) if c∈ [ a , b  ]

 .

-function as integralδ-function. . 

Since

∫
−∞

+∞ sin ( g α )
π α

dα=1
 ,

-fuction is expressed as limitδ-function.

(x )=
sin( g α )

π α  .

Since 

sin ( g α )
π α

=
1

2 π
∫
− g

+ g

e i α β d β
 ,

we have

δ (α )=
1

2 π
∫
−∞

+∞

e i α β d β
 .



-function as a limitδ-function. . In the following we also use the definition of -funktsiooni asδ-function.
the following limit

(x )=
sin 2

( A x )

π A x2

III.   Uncertainty principle  

In  a microworld it  is  common that  not  all  physical  quantities  can be are

simultaneously exactly measurable. And for that quantities we have some uncertainty

relations. 

If operators of two physical quantities  A and  B -  Â  and  B̂  commute (the

order of acting of the operators on the wave function can be changed)

[ Â , B̂ ]=0 ,

( Â B̂=B̂ Â , i.e. for each   we have Â B̂ψ =B̂ Âψ ), the physical quantities A ja B are
at  the  same time  (simultaneously)  exactly  measureable.  But  if  operators  do  not

commute

[ Â , B̂ ]=i Ĉ

( Ĉ  is  some  nonzero  Hermitean  operator)  A and  B are  not  simultaneously

measureable, and we have certain restrictions on measurements, called uncertainty

principles. If physical quantities cannot be exactly measured simultaneously, we need

to calculate the lower accuracy limit  of these measurements.

3.1 Simultaneous measurements, exact values of observables.

If two operator are commute
[ Â , B̂ ]=0 , 

we prove, that A ja B are simultaneusly measureable.

If we assume, that measurements of A ja B give simultaneously certain exact values

a and b, then opeators commute. Mathematically it means, that there exist such state

function (wave function)  , for which

Â ψ=aψ and B̂ ψ=bψ .

Therefore, operators have common eigenfunctions. Now it is easy to demonstrate that
ABBA ˆˆˆˆ   (prove it!). 



And vice versa, if 
[ Â , B̂ ]=0  ,

aa aA  ˆ

and demonstrate  that  these  are  also eigenfunctions  of  operator  B̂ .  Let  us apply

operator B̂

B̂ ( Â ψ a )=a( B̂ ψa ) .

Since operators commute, we have B̂ ( Â ψ a )= Â( B̂ ψa ) , and therefore 

Â ( B̂ψ a )=a( B̂ ψa ) .

Now we see that  aB̂  is the eigenfunction of operator Â  with the eigenvalue a, and

therefore

aaB  ~ˆ  .

We can find a constant b, that

aa bB  ˆ .

Therefore each eigenfunction of  Â  is at the same time also eigenfunction of  B̂

 .Therefore the quantities have simultaneous observables a and b. 

3.2 Mean values of physical quantities. The mean value of physical quatity in the

state, described by wave function  , is calculated from

∫ .ˆ* dVAA 

Proof. Using eigenfunctions of Â  we have an expansion


n

nnc .φ

Since  nc 2 is probability, that we obtain the result na  (n = 1,2, ... ), the mean

value is calculated as
.

2


n

nn caA

From the above given ∫ .ˆ* dVA  If we replace one   and use nnnc φφ  **  we

have



 
n

nnn
n

nn accAAA φφ )(ˆˆ

 
n n

nnnnn caca
2

φ  .

3.3 Uncertainty relations. Let us assume that 

  CiBA ˆˆ,ˆ   

and  derive  uncertainty  formulas  for  measurements  of  quantities  A ja  B .  It  is

obvious, that the deviations from mean value are not usable, since its mean value is

zero, therefore we consider the mean value of its square, which we define as follows

(root mean square deviation)

∫  dVAAA  22 )ˆ(*)(  ,

∫  dVBBB  22 )ˆ(*)(  .

For these quantities one can prove the following general result

222 )
2

1
()()( CBA   ,

which means the root mean square deviations cannot be simultaneusly equal to zero

and therefore we have no exact simultaneous values of observables A and B.

Proof. We present the simpler version, assuming that the mean values of A ja B are
equal to zero

0 BA  .

Now the root mean square deviations are

∫ dVAAA  222 ˆ*)(      ja     ∫ dVBBB  222 ˆ*)(  .

Let us take the nonnegative integral, where   is some real parameter

J (α )=∫|(α Â−i B̂ ) ψ|2 dV ≥ 0  .

Since Â  ja B̂  are Hermitean, one may write



J (α )=∫ ((α Â−i B̂ ) ψ )
*
(α Â−i B̂ ) ψ dV=

=∫ψ (α 2 Â2−iα ( Â B̂− B̂ Â )+ B̂2 ) ψ dV

(We have used the commutation relation for Â  and B̂  ,)

Using mean values it is
 222 )()()( BCAJ   .

Since 0)( J , the cofiicients must satify

222 )()(4  CBA  , 

which is our uncertainty relation.

Example. Let us have operators (coordinate and momentum)

.ˆˆˆˆ
x

ipBjaxxA x



 

We have
  ,ˆ, ipx x   Prove!

therefore Ĉ . Uncertainty relation is

4
)()(

2
22 
 xpx  .

Usually it is written in simpler form.  If we define 

,)()( 22
xx ppandxx 

then we have
Δxx Δxp x ≥



2
.

(Similar expressions we have also for y- ja z-coordinates and correponding momenta.)



4. Potential barriers, tunneling

4.1 Potential barrier (E > U). Consider the following potential energy










.0,0

,0,0

x

xU
U

Let us consider the flux of particles moving from the left to right and analyze 
their behaviour if the energy of particles E is higher than Uo.

For classical particles we know that all particles moving from left (region I) continue their moving in the region II, 
but for microparticles the behaviour of particles is different, some particles always reflect back and do not reach the 
II region.

We find the solutions of the Schrödinger equation in regions I and II and then apply the continuity of solutions for x
= 0.

Region I. Since U = 0, the Schrödinger equation may be written as

ψ 1
''
+k 1

2 ψ 1=0  ,

where k 1
2
=2 mE / 

2

 . General solution is

ψ 1( x )=e
ik1 x

+Be
− ik 1 x

 .

eikx describes particles moving from left to right. We assume that the  initial flux of particles moving toward the 
barrier is known and take the coefficient before it equal to one (A = 1) and the flux of particles moving towards the 
barrier is equal to k/m. The second term Be-ikx describes the particles that are reflected back. The flux of reflected 

particles is equal to  k 1|B|
2

/m.

Region II. Now U = Uo, and the Schrödinger equation is



ψ 2
''
( x ) + k 2 ψ 2 ( x )= 0  ,

where k 2=2 m ( E−U 0 )/ 
2

 . Special solutions are

e
ik 2 x and e

− ik 2 x

 .

Since in the region II there are particles moving from left to right, the general solution is

ψ 2 ( x )=Ce
ik 2 x

 .

In order to find the general solution to our problem, we must use the continuity conditions, which means that
ψ 1 ( 0 )=ψ 2 ( 0 ) , ψ ' 1 ( 0 )= ψ'2 ( 0 )  .

Using these conditions we after some algebra get that

B=
k 1−k 2

k1+k2

, C=
2k1

k1+k2  .

Therefore the general solution is

ψ ( x )={
eik1 x

+
k1−k2

k1+k2

e− ik 1 x , x < 0 ,

2 k1

k1+k2

e
ik 2 x

, x ≥ 0 . }
The main result we obtained is that B ≠ 0 and therefore some particles indeed reflect at x = 0 back. 

Let us calculate the flux of particles. The flux of particles, moving towards the barrier (incident particles) is 

ji=
i 
2 m

(ψ
dψ *

dx
−ψ * dψ

dx
)=

 k1

m  .

The flux of reflected particles and particles moving to region II are correspondingly



jr=
 k1

m
|B |2 , jt=

 k2

m
|C |2

 .

If we define the reflection coefficients and transition coefficients (R and T) (as a ratio of densities of current of 
probabilities)

R=
jr

j i

= |B |2 , T=
j t

j i

=
k2

k1

|C |2

 ,

it is possible to verify that

R+T= 1  .

4.2 Potential barrier (E < U0). Barrier is the same, but now we assume that E < Uo. The classical particles must
reflect at x = 0 back, since classical particles can move only in regions where  E ≥  U. Microparticles have some
probability to move in regions where E < U (in regions where kinetic energy is negative!).

Region I. The general solution is the same as in the previous case

ψ 1( x )=e
ik1 x

+Be
− i k1 x

 .

Region II. Schrodinger equation is

ψ 1
''
− κ 1

2 ψ 1= 0  ,

where κ 1
2
=2m (U 0−E )/ 

2

. Special solutions are eκ x
 and e− κ x

. Since the 

solution must exist in the region 0 ≤ x <  , the first one is not applicable, since in x →   case xe  → , the 
second solution is applicable, since it is finite. Therefore the general solution is 

ψ 2 ( x )=Ce
− κ 2 x

 .

Applying the conditions ψ 1 ( 0 )=ψ 2( 0 ) , ψ ' 1( 0 )= ψ'2 ( 0 ) , we get B and C 
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
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and the general solution is 
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The result is physically very interesting. The fact, that particles reflect back is obvious, but the fact that C ≠ 0 is 
shocking, because it is possible to obtain particles inside the barrier (which is forbidden to classical particles). 
Probability density of finding particles inside the barrier is

x
II e

k

k
x 


 2

22

2
2 4

)( 


  .

The probability density is increasing exponentially. Probability distribution
2

  graph. On the left side there is the interference picture of particles

(waves) moving towards the barrier and reflected particles.

It  appears,  that  finally  all  particles  reflect  back,  since  the  reflection
coefficient is equal to 1. Indeed, the simple calculation gives (prove!) 

1*
2

 BBB
j

j
R

l

p  .

4.3 Tunnel effect (tunneling). Consider the next potential barrier










.,0,0

,0,0

axx

axU
U

Let us consider the flux of particles moving in the region I from left to right 
(toward the barrier) with energy E that is less than U0 (E <Uo ). Since the with 
of barrier is finite there is nonzero transition probability and some particles may

move to the region III. That effect is called the tunnel effect or tunneling. Of course, in classical physics there is no 
tunneling, since all classical particles must reflect back at x = 0.

In order to prove tunneling we find general solutions for each region and then apply the continuity conditions for x 
= 0 and x = a. Region I 

ikxikx
I Beex )(  .

Region II 

xx
II eDeCx  )(  .

(Since 0 ≤ x ≤ a both special solutions must be used). Region III



ikx
III eFx )(  .

Continuity conditions 

ikaaa eFeDeCDCB   ,1  ,

ikaaa eikFeDeCDCBik   )(,)()1(   ,

gives solutions 

)(2)()(

)()(
22

22

achikashk

ashk
B








  ,

)(2)()(

2
22 achikashk

eik
F
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








 .

Since F ≠ 0 there exists tunneling, particles have nonzero probability to „go through“ barrier. 

Transition coefficient 

)(4)()(

4
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2222222
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


  .

It depends on 


)(2 0 EUM 
  and a.

The general solution is quite complicated and we therefore consider the 
simpler specific case where κa >> 1 . Then sh2κa ≈ ch2κa ≈ ae 2 /4 and

we get 

ae
k

k
FL 



 2
222

22
2

)(

16 


  .

Transition probability decreases exponentially 

aeL 2  ,

Calculating R = 2
B , it is possible to verify that

1 LR  .



5. Potential well

5.1 Infinite potential well.  At first we deal with case 0U  (infinite well). In that case we have 0 IIIII  , 

i.e. particles may move only in region, where U = 0. It is the free particle case and the general solution is

ikxikx
I eBeAx )(  .

where



ME
k

2
  .

Initial conditions are 0)()0(  aII   and we get

0,0   ikaika eBeABA  .

From the first one B = - A and after substitution to the second one we have

0)sin(2)(   kaiAeeA ikaika  .

Since A ≠ 0 (otherwise 0Iφ  and there are no particles at all), we have

0)sin( ka  

from which

,3,2,1,  nnka   .

(n = 0 is not allowed, since it gives k = 0 and 0Iφ ). Substituting k we 

obtain that the energy in infinite well is discrete




,2,1,
2

)(

2
2

2
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 nn
MaM

k
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  .

(In classical well energy is continuous E0 .)

Orthonormed wave functions are



a
xn

a
xn


 sin

2
)(   .

Lowest energies and corresponding probability distribution:

a

x

aMa
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 22
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2
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212   ;      
a

x

a
EE




3
sin

2
,9 22

313   .

5.2 Finite potential well. Now we deal with the following potential energy 



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,0,0

0 axxU
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and assume that E <Uo .

Comparing with 0U  case, we are faced with more complicated problem,
since wave functions in regions II and III are nonzero. As we see, we have no
analytic solution at all. 

General solutions for different regions are

ikxikx
I eBeAx )(  ,    x

III
x

II eDxeCx    )(,)(  .

Continuity conditions for x = 0 and x = a give

CBAkiCBA  )(

aikaikaaikaika eDBeAeikeDBeeA     )(  .

We eliminate C and D, then it reduces to the system for A and B 

)()( BAkiBA 

)()( akiakiakiaki eBeAkieBeA     .

That system has nontrivial solution  if the determinant is equal to zero. Writing it as

0)()(  BkiAki 

0)()(   BkieAkie akiaki   ,
we must demand that 

0
)()(





 kiekie

kiki
akiaki 


,

which gives



0)()( 22   akiaki ekieki   .

Real part of above given relation is automatically zero. For the imaginary part we have 

0cos2sin)( 22  kakakk   ,
which is written as

0cot2)( 22  kakk 

or

22

2
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






k

k
ka  .

Using the expressions of k  and   it may be written as

0

0

2

)(22
tan
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







 .

It is obvious, that the last equation is not solvable analytically. It can be solved numerically or graphically.

We shortly show how to solve it graphically. At first we solve the equation 

0cot2)( 22  kakk 

for 

2
cot,

2
tan

ka
k

ka
k    .

Next we draw the graphs of both functions using k  coordinate frame and use the relation between   and k  

2
022 2



UM
k   .

It is a circle in  k  frame with radius  /2 0UMr   . The common points correspond to possible energy
values: we find the values of k (or κ) and calculate ) and calculate E.

On figures we see
that inside the well

there is always finite
number of possible

energy states
(minimum is 1 state)
and it depends how

large 
0U  is. In our

case thare is three
energy levels.


