
We have one dimensional chain of identical atoms with mass m. Nearest atoms are connected by
the spring with elastic constant k and equilibrium distance between nearest neighbor is equal a. We
need to describe the motion of atoms and calculate specific heat of the chain. We assume that total
number of atoms in chain is N. Then the equation of motion for atom n is follows:

m⋅ün=Fn , 

here Fn  is a force acting on atom n and un – displacement of this  atom from equilibrium position.
The total potential energy of all deformed springs can be calculated so (classic equation for Hooke's
force): 
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The Fn can be calculated directly from formulas:

Fn=−
dU
dun

=k⋅(un+1−2un+un−1)

The equation of motion is look like so:

ün=
k
m

⋅(un+1−2un+un−1)

REMARK.
The total energy of the interacting atom can be decomposed into a power series (Taylor series) by 
small atomic displacements un.
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The second member is equal to zero because atoms are located in their  equilibrium position

Fn=−(
dU
dun

)
un=0

=0 .  In this case U=U (un=0)+
1
2
∑
n ,n '

(
d2U

dundun '

)
un , un '=0

unun '+.. . . 

After substitution (
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For harmonic approximation (we take into the account only quadratic members). The force acting 
on atom n now could be directly calculated so:

Fn=−
dU
dun

=−
1
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Φn , n 'un ' . If we assume the interaction only nearest atoms this equation can be

simplified by this way: 
1. Φn , n '=k , for n≠n' , for non diagonal elements k- elastic constant of the spring.
2. The diagonal elements of  this matrix can be calculated so, if all atoms were displaced on the
same distance u0  (whole crystal translation on the distance u0) , Fn must be equal to 0. It means that



Fn=−
dU
dun

=−
1
2
∑
n '

Φn , n 'u0=−
u0

2
∑
n '

Φn , n'=0   or ∑
n '

Φn ,n '=0 and finally Φn , n=−∑
n '≠n

Φn , n' .

For our simple model Φn , n=−2k .  And for force acting on atom number n we obtain the same 
equation.

Fn=−
1
2
(k⋅un+ k+k⋅un+1+k⋅un−1+k⋅un−1+2⋅unΦn , n)

END OF REMARK

The solution of this first order differential equation can be represented as:

un(x ,t )=A⋅ei (ω⋅t+k⋅x)
=A (t)⋅e ik⋅x ,and A (t )=A⋅eiω⋅t

or if we take into account that the chain is discrete and coordinates of atoms can be calculated by 
this way xn=n⋅a

un(t)=A⋅ei (ω⋅t+k⋅n⋅a )
=A(t )⋅e ik⋅n⋅a

after substitution and calculation of the derivatives we get equation for frequency:
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=
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To calculate the valid values for k-wave vector we apply the periodic boundary condition. It means 
that if total number of atom in the chain is equal to N, so the atom with number n and n+N are 
equal. Or by other words un=un+N . The total length of chain is L=N a.
After substitution we have:

A⋅ei (ω⋅t+k⋅n⋅a )
=A⋅ei (ω⋅t+k⋅(n+N)⋅a )  or e ik⋅N⋅a

=1 bu it is possible only if k=
2π

L
n , here n∈Z .

Now we know how the wave vectors can be calculated and we be able to simplify the calculation of

frequencies. Do no forget that k-vector is discrete parameter with the step of changes Δ k=
2π

L
.

This function 

ω=ω0|sin(
k⋅a
2

)|  

is a periodic with period of π. It means that make sense to take into account only only non equvalent
values of wave vector.  The nonequivalent values of k-vector are located in regions



[0...2⋅π] or [− π
2

...+ π
2

] .

The total number of possible values for k-vector in this region is equal to N. Each k-vector value
corresponds to individual  longitudinal  harmonic waves  propagating in chain.  Each wave in  the
crystal should be counted only once. The harmonic waves are form the full set of basic vectors in
the space of atomic vibrations. The harmonic waves are form the full set of basis vectors in the
space of atomic vibrations. It is means that vibration of each individual atom can be represented as
a linear combination of these harmonic waves.  By the other words

un(t)= ∑
k=−π /2

+π/2

A k⋅e
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To simplify further calculations of specific heat I want to define an additional function, density of

vibrations or density of states g(ω)=
d n
d ω

. The physical meaning is this function dn=g(ω) dω is it

give the value of harmonic waves dn in region of frequencies from ω to ω+dω.  For example the
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By  using  expression k=
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substitution into previous equation we finally obtain: g(ω)=
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As  you  see  this  function  can  be  used  to  substitute  integration  over  the  wave  vector  by

integration over the frequency. Corresponding relation is: dk=
2π

L
g (ω)dω .

Now we need to calculate the total energy of chain. This equation looks like so:
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Lets start from calculation of kinetic energy by substitution un(t)= ∑
k=−π /2

+π/2
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The final result is Ekin=
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The potential energy can be calculated by the same way and after some simplifications:
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and the total energy in harmonic-waves presentation is:
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As you see the  vibrating chain  of  atoms in this  representation  is  looks like  a  set  of  harmonic
oscillators, for each value of k correspond individual harmonic wave or harmonic oscillator. Total
number of different oscillator is equal to N. It means that the  total energy of chain can be calculated

by formulas from quantum mechanics Ek=ħω(n+
1
2
)
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) . Here  <nk> is a average value of quantum

 number  n which can be calculated from Bose-Einstein distribution. 
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