
19. Time independent perturbation theory

There  are  not  much  problems  which  have  general  analytical  solutions.  There  different
possibilities to solve them using different approximation methods. Here we start with problems
where there are some small perturbations acting in addition to usual forces.

Here we treat the following problem. We assume that we have solved the eigenvalue problem

000
0

ˆ
nnn EH  

(we know energy 0
nE  and corresponding eigenfunctions 0

n , also we assume that for each 0
nE

there is only one eigenfunction 0
n ). We have to solve the next eigenvalue problem

nnn EH  ˆ

where
HHH  ˆˆˆ

0

and the additional term H ˆ  may be treated as a small perturbation (in each case the smallness of
perturbation must be separately analysed). In general we assume that the additional energy due
to the perturbation is very small compared to energies  0

nE  and energy differences between
levels.

19.1 Problem setup. In order to follow our step by step solving method more easily, we write
the energy operator in form

Ĥ= Ĥ0+λ⋅Ĥ '

where   is some helping parameter, which is useful to to compare the terms of the same order
of values. After solving the problems we at the end take 1 .

We write down the following series expansion

...2210  nnnn EEEE   ,

...2210  nnnn   .

After substitution to the original eigenvalue problem

...)...)((...))(ˆˆ( 221022102210
0  nnnnnnnnn EEEHH 

and equating the terms with the same powers of  , we get

000
0

0 ˆ: nnn EH    ,

011001
0

ˆˆ: nnnnnn EEHH    ,

02112012
0

2 ˆˆ: nnnnnnnn EEEHH    ,

and so on
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The first of equations is satisfied, since we assumed that the starting eigenvalue problem is
satisfied.

19.2 First order approximation. The next, i.e. the first order approximation is possible to find
from

0110
0

011001
0 )'ˆ()ˆ(ˆˆ

nnnnnnnnnn HEEHorEEHH    .

From here we find the first approximation to energy and wave function. The first order to wave
function we express as a series

ψn
1=∑

m

am
1 ψm

0

( ψn
0  is a full ON system of functions).

After substitutions and using the fact that ψn
0  are the eigenfunctions of Ĥ 0 , we get

∑
m

am
1 (Em

0 −En
0) ψm

0 =(En
1−Ĥ ' ) ψn

0  .

Multiplying to the ψk
0  conjugated and integrating, we obtain

ak
1(Ek

0−En
0 )=En

1 δ kn−H' kn  ,
where

H kn
' =∫(ψk

0)
* Ĥ ' ψn

0 dV

are the matrix elements of perturbation operator.

Taking k = n, we obtain the first order correction to energy

nnn HE 1  ,

(these are diagonal elements of perturbation operator).

If nk  , we obtain the coefficients to the first approximation of wave function

00
1

kn

kn
k

EE

H
a




  .

As we see, one of the coefficients -  1
na  - remains undetermined. It is determined from the

normalization of the first order wave function

∫   1)(*)( 010010 dVaa mmn
m

mmn   .

In the first order approximation of   coefficient 1
na  must satisfy

0)*( 11  nn aa  .
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As we see, it is imaginary and for simplicity we may take it equal to zero, therefore we shall take
01 na .

In conclusion, the first order approximation (λ = 1) is

nnnn HEE  0  ,


 




nk
k

kn

kn
nn EE

H 0
00

0   .

19.3 Second order approximation. Let’s calculate the second order energy correction. It is
needed mostly in that case when the first order approximation is equal to zero.

For the second order approximation we use the equation

02112012
0

ˆˆ
nnnnnnnn EEEHH    .

We represent 2
n  as a power series


m

mmn a 022 

and substitute it together with the first order approximation to the above given equation. We get
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0200
00

020 ˆ
nn

nk
k

kn

kn
nn

m
mmn

nk
k

kn

kn

m
mmm E

EE

H
HaE

EE

H
HaE  









 



Multiplying from the left with the 0
r  conjugated and integrating, we have

rnnrk
nk kn

kn
nnrn

nk kn

knrk
rr E

EE

H
HaE

EE

HH
aE  2

00
20

00
20 









 



 .

Taking r = n, we get the second order energy approximation


 









nk kn

nk

nk kn

knnk
n

EE

H

EE

HH
E

00

2

00
2  .

Taking nr  , we get the second order coefficients for wave function

2000000
2

)())(( rn

nnrn

nk rnkn

knrk
r

EE

HH

EEEE

HH
a













 .

Analogically  to the first order approximation  2
na  remains to be underdetermined and its is

determined from the normalization condition

∫  
 


nk k

kk
nk

kkn
k

kkkkn dVaaaa 1)(*)( 022010022010   ,

whic for the second order terms gives
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∑
k≠n

|ak
1|2+((an

2)∗+an
2 )=0  .

If we take an
2  to be real, we have

an
2
=−

1
2 ∑k≠n

|ak
1
|
2
=−

1
2∑k≠n

|H nk
' |2

(En
0−Ek

0)2
 .

Example 1. Oscillator in constant force field.  Assume that in addition to elastic force there
acts some constant force F. Its potential energy is

U=−F x  .

It is added to energy operator which we write as

Ĥ '=−F x  .

Next we treat it as a small perturbation (assuming that F is small).

To find corrections to energy, one must calculate the matrix elements

H nm
' =−F∫

−∞

+∞

ψn( x ) xψm( x ) dx≡−F xnm  .

From the previous paragraphs we know, that we have nonzero elements, if m=n±1 . Therefore
the nonzero matrix elements are

xn,n+1=√
ℏ

2 Mωω
√n+1 , xn,n−1=√

ℏ

2 Mωω
√n  .

Here we see that the first order energy correction is equal to zero

En
1=H nn

' =0  .

Therefore we must examine the next approximation

En
2
=∑

k≠n

|Hnk
' |2

En
0−Ek

0
=
|Hn n+1

' |2

En
0−En+1

0
+
|H n n−1

' |2

En
0−En−1

0
=

.
2

)(
2

22
1,

2
1,

2

 Mω

F
xx

F
nnnn  

ℏ

Here we have used that )2/1(0  nEn ℏ  and the above given matrix elements. As a result we
see, that the energy of all energy levels decreases to the same amount.

Our example was trivial,  since the problem can be solved exactly, transforming the general
expression of the total energy
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2

2
2

2

22222

2
)(

2222 



Mω

F

Mω

F
x

Mω

Mω

p
Fx

xMω

Mω

p
H   .

It means that in the case of additional constant force the equilibrium point of oscillator is shifted
and also the equilibrium point of energy is shifted.

Example 2. Anharmonic oscillator. Assume that the following perturbation

43'ˆ xxH    

is added to the harmonic oscillator, where    and  
are  some  small  coefficients.  We  call  it  anharmonic
oscillator, since the potential energy is not parabolic.

These anharmonic  terms simply follow from the next
physical  considerations.  Let  us  take  some  arbitrary
potential energy which is in zero point minimal. In small
deviations from the equilibrium we may it expand as

 4
4

4
3

3

3
2

2

2

0 !4

1

!3

1

!2

1
)( x

dx

Ud
x

dx

Ud
x

dx

Ud
x

dx

dU
UxU  .

Since 00 U  and in minimum point also 0/ dxdU  and 0/ 22 kdxUd  we have

 43
2

2
)( xx

kx
xU   ,

where in higher powers the coefficients are denoted by   and  .

Atvery small  deviations  we may it  approximate  with parabolic  potential  energy,  but if  the
deviations increase we must take into account also the next terms. 

We start from the cubic term. Since

(x3)nn=∫
−∞

+∞

x3ψn
2 dx=0

we must use the following, second order approximation

E ''n=
α2

ℏω∑n'

( x3)nn'(x3)n'n

(n−n' )
 .

Using the 3x  matrix elements, given in 15, we after some simple calculations have

E ''n=−
15ℏ2 α2

4 Mω3 ω4
(n2+n+

11
30

)  .

For the next term we have 0)( 4 nnx . Its matrix elements are calculated as

(x4 )nn=∑ (x2)nn'( x2)n'n=(( x2)nn−2)
2+((x2)nn)

2+(( x2)nn+2)
2  
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and gives that the corresponding energy approximation is

22
22

2

)
2

1
(

2

3
'  nn

Mω
E n



ℏ  .

Since it is also proportional to the Planck constant square, the both approximations are of the
same order and must be treated together.

The final result is

 nnn EEnE ''')
2

1
(ℏ

)
2

1
(  nℏ )

30

11
(

4

15 2
43

22

 nn
Mω 

ℏ 22
22

2

)
2

1
(

2

3
 nn

Mω 

ℏ  .

It of course depends on   and  , and on their signs.

20. Time independent perturbation theory(degenerate case)

Next we consider the case,  where to the initial  system energy level  0
nE  there corresponds

several independent states
ψn1 , ψn 2 ,  , ψnr  .

(In H-aatom, for example to nE  corresponds 2n  different states.)

Now we have
Ĥ 0ψni=En

0 ψni , i=1 , 2 ,  , r  ,

but also an arbitrary linear combination

ψn
0=∑

i=1

r

ci ψni

satisfies the same eigenvalue problem
Ĥ 0 ψn

0=En
0 ψn

0  .

20.1 Problem set up. Let us take a new problem where to the pevious Hamiltonian operator
there is added some samaal perturbation operator 'Ĥ . The total energy operator is

Ĥ= Ĥ0+ Ĥ '
and we are interested in problem

Ĥ ψ=E ψ  .

In general the degeneracy of states are connected with some symmetries (central symmetry or
others). Usually the perturbation has no such symmetry and for that reason the symmetry is
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breaked and it leads to the splitting of energy levels 0
nE  and we get closely laying energy levels

nn EE 0 .

Next we analyse of how the energies  0
nE  are splitted. We restrict ourselves to the first orde

approximation, which was given in the previous paragraph

( Ĥ 0−En
0 ) ψn

1=(En
1−Ĥ ' ) ψn

0  .

where  1
n  and  1

nE  are  the  first  order  improvements.  Since  we operate  in  the  subspace,

corresponding  to  0
nE ,  we  take  zeroth  order  wave  function  0

n  as  an  arbitrary  linear

combination of functions nrnn  ,,, 21   . Therefore we analyse the equation

njn

r

j
jnn HEcEH  )'ˆ()ˆ( 1

1

10
0  



 .

Multiplying from left to *ni , we integrate and use ijnjni dV ∫ * .

At first we demonstrate that then the left side of the previous equality is equal to zero, i.e.

∫  0)ˆ(* 10
0 dVEH nnni   .

If follows from the fact that 0Ĥ  is Hermitean

∫ ∫  0*))ˆ(()ˆ(* 10
0

10
0 dVEHdVEH nninnnni   .

For that reason the integral from the right side is also equal to zero

 ∫



r

j
njnnij dVHEc

1

1 0)'ˆ(*   .

Introducing matrix elements

∫ dVHH njniij  'ˆ*'

(matrix elements in the subspace of functions nrnn  ,,, 21  ) and taking into account the
orthonormality of nrnn  ,,, 21   , we get he following equations

ricHE
r

j
jijijn ,,2,1,0)'(

1

1 


  .

It is the linear homogeneous system for coefficients jc , which is written in the matrix form as

0

'''

'''

'''

2

1

1
21

222
1

21

11211
1

















































rrrnrr

rn

rn

c

c

c

HEHH

HHEH

HHHE











 .
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20.2 Approximations to energy. There are nontrivial solutions, if the determinant of the system
is equal to zero. Denoting 1

nE , we have

0

'''

'''

'''

21

22221

11211









rrrr

r

r

HHH

HHH

HHH















 .

From it we have some r-th order equation for 

01
1  

r
rr    ,

which has r real valued solutions (roots)

r ,,, 21 

(there in general also coincident ones). Therefore, all nonzero solutions i  give us new energy
level

in
i
n EE  0  .

For each i  one can solve the system and find the corresponding i
r

ii ccc ,,, 21  , which in
turn gives the wave function





r

j
nj

i
j

i
n c

1

  .

That is the zero approximation which must be further used to calculate 1
n  and 2

nE , if needed.

Example 1. Double degeneration. Assume that for 0
nE  we have two states 21 , nn  . Then

2211
0

nnn cc    .

One must calculate the determinant

0
''

''

2221

1211






HH

HH




 

and solve the equation 0'')')('( 21122211  HHHH  , or

0'''')''( 211222112211
2  HHHHHH .

We got the quadratic equation 02  cb , which has two real number solutions. 

Example 2. Stark effect: splitting of spectral lines in external electric field.

As an example we treat the two lowest energy levels of the H-aatom (n = 1 and  n = 2) and
demonstrate that there are no splitting for n = 1, but n = 2 level splits to three levels.
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Assume  that  in  addition  to  Coulomb  force  on  electron  acts  small  external  homogeneous
electrical  force,  caused  by  the  electrical  field  ),0,0( 


 directed  along  the  z-axis.

Electrical potential is expressed as
φ ( z )=− z Ε ,

therefore  the  additional  potential  energy  is  zeU  .  It  means  that  the  following
perturbation

Ĥ '= e Ε z  

is  added.  That  perturbation  is  indeed  small:  if  we  take  0rz   (Bohr’s  radius)  and  for
mackroscopic field stregth quite large value mV /106 , we get eVU 510 , Coulomb
energy due to the nuclear charge is at the same distance approximately 18 eV.

We consider the splitting of energy levels for n = 2. It has energy

E2
0=−

R ℏ

4
 .

2s and 2p give us four total states. We denote them

1214211321022001 ,,,    .

Next we must calculate the matrix elements of perturbation Hamiltonian, which in our case are
the following integrals

∫  ijjiij zedVzeH  *'  .

As we see,  we must  calculate  the matrix  elements  from z-coordinate.  In  §22 (treating  the
selection rules) we calculate the matrix elements of x, y and z separately, therefore we here use
the rules which we obteined in §22, that for z-coordinate the only nonzero matrix elements are
those, for which  0m  and  1l . In our case it means that the only nonzero matrix
elements are

*122112 zzandz   .

Next, using the explicit expressions of wave fuctions, we calculate  12z  . The corresponding
wave functions are

02

0
3

0

2001 )2(
32

1
),,(),,( r

r

e
r
r

r
rr






  ,




 cos
32

1
),,(),,( 02

0
3

0

2102
r

r

e
r
r

r
rr



  .

Since  dddrrdV sin2  and cosrz  , we have to calculate three integrals

∫∫∫ 

  




2

00

2

0 0

4

0
3

0
12 sincos)2(

32

1
0 dddre

r

r

r

r

r
z r

r

 .

Integral by    gives  2 , by    gives 2/3 (using the substitution  cosu ). The remaining
integral is
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∫
 



0

4

00
12

0)()2(
24

1
dre

r

r

r

r
z r

r

 .

Next we substitute 0/ rrx   and use integrals

∫


 
0

!)1( nndxex xn  ,

which gives us

∫∫



 



0
0

4
0

0

4

00
72)2()()2( 0 rdxexxrdre

r

r

r

r xr

r

 .

The final result is
02112 3rzz   .

Nonzero matrix elements of perturbation Hamiltonian therefore are

 02112 3'' reHH  .

In order to find energy correstions 1
2E  we must calculate the following 4x4 determinant and

equal it to zero

0

000

000

00'

00'

12

12














H

H

 .

Somple calculation gives
0)'( 2

12
22  H  .

We have two solutions 0 , whic mean that the energies of states 2113    and 1214 

do not change. The remaining two solutions

ε1,2=± √H'12
2 =± 3 e r0 Ε

mean that in the subspace of states 2001    and 2102    energy levels split and the energies
are

 0
1
2 3

4
re

R
E

ℏ
 ,    0

2
2 3

4
re

R
E

ℏ
 .

Splitting of 2s and 2p levels is illustrated
on the figure.

Next we find the corresponding wave functions. For that we must solve the equation
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


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
































c

c

c

c

er

er









which reduses to
03 201  cerc  ,

03 210  ccer   ,

03 c  ,

04 c  .

We see  that  for  0  we may take  the  same functions  2113    and  1214  .   For
 02,1 3 re  we correspondingly get

210200'        ja     210200''  

(unnormed). These functions must be used for the next approximation.

Ground state n = 1. Its energy does not change, because due to the previous conditions ( 0m
 and 1l ) the matrix element 11z  is equal to zero

∫  02
10011 dVzz 

(there is odd function by z).

Next are given the energy levels befor and after splitting. Instead of one 2p   1s spectral line
we in electrical field have spectral lines.

Example 3. Elementary Zeeman effect (zero spin electron). Suppose we had an atom and its
states are found from

000
0

ˆ
nlmnlnlm EH    .

For each energy 0
nlE  there are on 2l +1 states 0

nlm  (degenerate by m).
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In homogeneous magnetix field directed along the  z-axis the following perturbation operator
(see §13)

zL
Mω

eB
H ˆ

2
'ˆ   

must be added. Supposing that the perturbation is small we next find the corrections to energy
level 0

nlE . At first one must find the matrix elements mmH '' . It is easy to verify that the only
nonzero matrix elements are diagonal, i.e. if mm ' . Indeed

∫ ∫  mmnlmnlmnlmznlmmm m
Mω

Be
dV

Mω

mBe
dVL

Mω

Be
H '''' 2

*
2

ˆ*
2

' 
ℏℏ

 .

The energy corrections are calculated from

0

'00

0'0

00'

22

11









rrH

H

H















 ,

which reduces to
0)'()')('( 2211  rrHHH  

We see that  first  order  energy corrections  (as  in  the nondegenerate  case)  are  given in  the
following way

lllmmBm
Mω

Be
H Bmmm  ,,1,,

2
' 

ℏ
  .

The eigenfunctions remain the same, since from

0)'(  mmm cH

that for each m   we have 0mc , the others are zero.

The result is that each energy level 0
nlE  splits in magnetic field to 2l+1 levels having energies

mBEE Bnlnlm 
0  .

Difference between the neighboring levels BE B  is in all cases the same.
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It is interesting to note that due to the selection rules  1,0,1  ml  (see §22) we
instead of one spectral line get always three spectral lines (normal Zeeman effect). Example:
transition 3d   2p.

In conclusion we estimate the magnitude of energy splitting.  Since  BE B  the distance
between levels is small in not very small magntic fields. If, for example,  B = 1 T ,we get

24103,9 
E  J  5106 

  eV, which is  in  most  cases smaller  than the distance between

nlln EE 1  .
More detailly we analyse Zeeman effect in §24. Here we neglected the electron intrisic magnetic
moment due to its spin.

21. Time dependent perturbation theory

Next we start to analyse the perturbations when the perturbation operator depends explicitly
from time

)('ˆ'ˆ tHH   .
The total Hamilton operator

)(ˆˆˆ
0 tHHH 

depends on time and it means that the total energy of a given system is not conserved (see § 26).
For that reason there are no energy level  changes or splittings,  but there appear transitions
between different energy levels (radiation or absorption).

21.1 General solution of Schrödinger equation without perturbation. At first we analyse the
solutions without perturbation. If we have eigenvalue problem for 0Ĥ

nnn EH  0
ˆ

and we assume that it is solved. Then the possible energy values

,, 21 EE

and the corresponding stationary eigenfunctions
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,, 21   .
are given.

The general solution of the time dependent Schrödinger equation

i ℏ
∂ Ψ
∂ t

= Ĥ 0 Ψ

is an arbitrary linear combination

Ψ (r ,t )=∑ cn e
−

i
ℏ

En t
ψ n(r )

 ,

where ,, 21 cc  are some arbitrary constants.

21.2 General solution for the time dependent perturbation. Next we assume, that from some
moment, for example, from t = 0 to our system starts to act some time dependent perturbation

)('ˆ tH . We have to solve the next equation

i ℏ
∂ Ψ
∂ t

= Ĥ ( t ) Ψ
 ,

where
)('ˆˆ)(ˆ

0 tHHtH 

Since for t < 0 the solution is expressed as an above given linear combination, we start to search
the solution in form

Ψ (r ,t )=∑ cn( t ) e
−

i
ℏ

En t
ψ n(r )

 ,

where coefficients )(tcn  depend on time.

Now  we  get  some  differential  equation  for  )(tcn .  Calculating  separately  both  sides  of
Schrödinger equation, we have

i ℏ
∂Ψ
∂ t

=∑
n

e
−

i
ℏ

En t
ψ n (r ) ( En cn( t )+ i ℏ

d cn(t )

d t
)

 ,

 


n
nn

tE
i

n rtHEetctHH
n

)())('ˆ()())('ˆˆ( 0


ℏ   .

Equalizing, we get

i ℏ∑
n

d cn( t )

d t
e
−

i
ℏ

En t
ψ n (r )=∑

n

cn ( t ) e
−

i
ℏ

E
n

t
Ĥ ' ( t ) ψ n(r )

 .

Multiplying from left to )(* rm


  and integrating, we get the following equation




 mn

tE
i

n

tE
i

m Hetce
td

tcd
i

nm
')(

)(
ℏℏℏ  ,

where
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H ' mn=∫ψ m∗Ĥ ' ( t ) ψ n dV =⟨ψm| Ĥ ' ( t ) |ψ n ⟩

are the matrix elements of perturbation operator (which, of course, depend on time).

At last we move the exponent from left to the right side. Denoting

ℏ

nm
mn

EE 
  ,

we write the equations for )(tcm  in its final form


n

nmn
tim tcHe

td

tcd
i mn )('

)( 
ℏ  ,

where m = 1, 2, … .

The last system of equations is exact and applicable for all perturbations, since we have made no
additional restrictions.

21.3  Small  time  dependent  perturbation. Next  we  assume  that  )('ˆ tH  is  some  small
perturbation. Coefficients )(tcn  are expanded as series

 210)( nnnn ccctc  ,

where each next term is one order of values smaller. Small perturbation means, that nonzero
matrix elements  mnH '  are of the same order of values, as  1

nc . Substituting coefficients and
equating the terms with the same order of value, we get the next equations

0
0


td

cd
i mℏ  ,


n

nmn
tim cHe

td

cd
i mn 0

1

'
ℏ  ,


n

nmn
tim cHe

td

cd
i mn 1

2

'
ℏ  ,

…

From the first equation it follows that
.0 constcm 

Therefore choosing 0
mc  we are able to calculate step by stem other coefficients 1

nc , 2
nc , … .

21.4 First order approximation. At first we start to analyse the situation, when before the
perturbation starts to act (t < 0) our system was in some stationary state with energy  nE .
Therefore we assume, that

10 nc  ,

and other coefficients )(00 nmcm  .

The equations for the first approximation then are
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mn
tim He

td

cd
i mn '

1


ℏ  ,

and the simple integration gives

 dHe
i

c
t

mn
i

m
mn∫

0

1 '
1

ℏ
 .

Since  )('' tHH mnmn  , it is not possible to integrate without the exact form for these matrix
elements.

In textbooks the above given expression is freguently written as

tdHe
i

c
t

mn
ti

m
mn∫

0

1 '
1 

ℏ
 ,

which is mathematically not quite correct. We have denoted the time under the integral by τ.

One interesting and important conclusion. If our system is
in some stationary state with energy  nE , then after the
time  dependent  perturbation  is  applied  there  open  the
possibilities  for  transitions  to  other  states  with  other
energies  mE  ( nm EE   or  nm EE   ) if  01 mc . The

probability of transition n   m  depends on 
21

mc  .

21.5 Harmonic perturbation. Next we specify the perturbation operator )('ˆ tH . We assume
that the perturbation is harmonic with frequency   (for example, the external electromagnetic
wave with frequency   and wave lenght   is applied) and write )('ˆ tH  as

titi ehehtH    ˆˆ)('ˆ  ,

where ĥ  is some time independent operator. Matrix elements of our perturbation operator are

ti
mn

ti
mnmn ehehH   '  ,

where *)(ˆ  nmnmmn hhh   . In order to find 1
mc  one must calculate integral

∫




t

mn
i

mn
i

m dhehe
i

c mnmn

0

)()(1 )(
1



ℏ
 .

These integrals are quite elementary:

)(

1

)(

)(

0

)(

0

)(












mn

ti
t

mn

it
i

i

e

i

e
de

mnmn
mn


∫  .

The final result is
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
































mn

ti

mn
mn

ti

mnm

mnmn e
h

e
hc

111 )()(
1

ℏ
 .

Next we must calculate the probabilities 
21

mc of transitions n   m, but before it we give some
general remarks. Usually the frequency   is large (in the visible light case, for example   ~

1510   1/s), and therefore for mn   both summands are very small, but if mn   (and
0mn ),  the first  summand is  large  and the second summand is  small  and it  should be

omitted.  Therefore,  in  that  case  one  may  analyse  the  first  summand  only.  Since
ℏ/)( nmmn EE  ,  then in the case  0mn  there is  induced transition  from some low

energy level to some higher energy level and the system adsorbs from external radiation one
photon with frequency  mn  .  But when  0mn  we get induced (stimulated) radiation.
Now the first summand is small and the second one large. The frequency of external radiation
equals to mn   .

Next we analyse the abroption ( 0mn ). Omitting in 1
mc  the second summand, we have












mn

ti
mn

m

mneh
c

1)(
1

ℏ
 .

The corrsponding transition probability is














22

2

2

)()(

2

2
21

)(

))cos(1(2

)(

)1)(1(









mn

mnmn

mn

titi
mn

m
theeh

c
mnmn

ℏℏ

2

2

2

2

)(
2

)(
sin4











mn

mn

mn

t
h

ℏ

 .

Let us analyse the result more closely. Transition probability depends on the modulus square
2

mnh  of matrix element mnh  and also from the rapidly oscillating function of frequency 

2

2

)(
2

)(
sin









mn

mn t

 ,

which  is  nonzero  near  mn  .  Since  the  perturbation  is  small,  the  transition  probability
becomes essential after longer time intervals (theoretically, if t ). Next we demonstrate the
in the limit t  the transition probability is proportional to time and we have the resonance
transition, where kus mn  .

To prove it, we use the following definition of  -function

2

2sin
lim)(

xA

Ax
x

A 



  ,

which in our case gives
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)(2)
2

)
(

4

)(
2

sin
lim

2

2




















mn

mn

mn

mn

t
t

t
 .

Therefore, for long time intervals we have

)(
2

lim
2

2
21 





mn

mn
m

t
mn

th
cP

ℏ
 .

21.6 Transition probability per time unite. Since the transition probability is proportional to
time, we usually talk about transition probablity per time unit

)(
2

2

2




 mn
mnmn h

td

Pd

ℏ
 .

From  here  it  follows  that  the  transition  takes  place  in  frequency  mn  ,  which  is  the

resonance frequency and the probability is proportional to  
2

mnh  (and which also gives the
intensity of corresponding spectral line).

Instead of frequency one must use energy. Then

)(
2

2




ℏ
ℏ

 nm
mnmn EE

h

td

Pd  ,

which means that ℏ nm EE  .

It is obvious, that analyzing similarly the radiation processes, we get

)(
2

2




ℏ
ℏ





nm
mnmn EE

h

td

Pd  .

In the next paragraph we take a closer look to radiation processes and derive the selection rules
for spectral transitions.

22. Radiation transitions, selection rules

22.1 Perturbation due to the external electromagnetic field. Assume, that on atom there acts
some monochromatic electromagnetic wave (for example light wave), whic has the electric field
strength

)(cos0 rkt

   .

Since the atomic diameter ( d  ~ m1010  ) is small, comparing the wave length of light (in the
case of visible light    ~  m710  ), the quantity   /cos2cos rrkrk 


 in atomic

region  does  not  practically  change  and  we  therefore  take  rk

  to  be  constant  (dipole
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approximation). In that case  rk

  is some constant phase constant, we for simplicity take it

equal to zero. Electrical field strength then changes harmonically having frequency ω

tcos0


 .

Connecting the starting point of our coordinate system with nucleous, the electrical potential of
external field is




rr )(  .

(Indeed, if  )()( zyx zyxr 


 , then from )(rgrad


  we obtain the above
given field strength.)

If we assume that electrical field is directed along the z-axis: ),0,0( 


, then

tzzz  cos)( 0  ,

and it gives to electron the additional energy

tzezetU  cos)()( 0  .

The last expression gives us the following time dependent perturbation operator

)(
2

cos)('ˆ 0
0

titi ee
ze

tzetH  


  ,

which in turn gives us

2
ˆˆ 0  ze
hh  .

22.2 Transition probability. In induced transitions, both for mn   and also for mn 

the transition probability is expressed via the matrix elements of z, as

2

2

2
0

2

mn
mn z

e

td

Pd

ℏ





 ,

where

∫ dVzzz nmnmmn  *  .

Directing the field along the x- or y-axis, we analogically obtain

2

2

2
0

2

mn
mn x

e

td

Pd

ℏ





 ,   2

2

2
0

2

mn
mn y

e

td

Pd

ℏ





 .

It means that the transition probabilities are directly connected with matrix elements of radius
vector ),,( zyxr 



)( ,, mnmnmnmn zyxr 


 .

It is obvious that the transition is possible (allowed) only in cases, where 0mnr


. If 0mnr


,
the  transition  probability  is  equal  to  zero  and  there  are  no  such  transition.  Therefore  the
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investigation of matrix elements  mnr


 gives us information which transitions are possible and
which ones are forbidden. The restrictions on transitions are called selection rules.

The radiation, we analyze here, is usually called the dipole radiation, since the selection rules
depend on the matrix elements mnmn red


  of dipole moment

red




In addition to dipole radiation there are another ones: elctrical quadrupole, magnetical dipole and
another radiations which depend on the corresponding parameters. Since these have intensities
which are five to six orders of magnitude smaller from dipole radiation, we do not analyse then
here.

22.3 Radiation transitions. The elementary radiation theory,
given  in  1917  by  A.  Einstein,  it  follows  that  for  induced
radiation the probabilities are connected as follows

td

Pd
BB

td

Pd nm
nmmn

mn  )()(   ,

where  )(  was  the  intensity  of  external  radiation  and
nmmn BB   is  the probability  of  inner  (induced)  transitions.

We derived the same result from quantum mechanics

td

Pd
z

e

td

Pd nm
mn

mn 



2

2

2
0

2

ℏ


 ,

since 
22

nmmn zz   . As 2
0  characterizes the intensity of external radiation, we have, that

the probability of aromic transitions 
2

mnnmmn zBB   .

Therefore, quantum mechanics gives us the prescription to calculate Einstein coefficients.

Einstein theory gives also the relation between spontaneous and induced transitions 

mnnm B
c

A
2

32  ℏ
  .

Therefore  the  calculation  of  matrix  elements  of  coordinates  allows  also  to  analyze  the
spontaneous radiation (for example the mean life of exited state).
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Näide  1.  Harmonic  oscillator. In  the  case  of  harmonic  oscillator  the  selection  rules  are
determined by the matrix elements of x-coordinate

nmmn xx   .

Using the results of §6 it follows that

1,0  nmkuixmn
 .

From that it is obvious that transitions are allowed between
neighbouring levels.  In  radiation  the possible  transitions  are

1 nn  and  in  absorbing  1 nn .  In  the  first  case

energy ℏ  is radiated, in the second case the same energy is
absorbed. In conclusion: harmonic oscillator radiates and absorbes energy which is equal to
ℏ  (Planck’s energy quantum).

Näide 2. Atomic transitions. Next we analyse transitions in atoms, when there is transition
from the state  mln  with energy  nlE  to the state  '''' mln  with energy  ''lnE .
Since the transition probabilities are determined by the matrix elements of x, y and z, it is easy to
verify that the spin projection on transitions cannot change. Indeed, if we write the states as

 2/1),,( Yrmln nlm  ,

'2/1''' ),,(''''  Yrmln mln  ,

we, for example, for ijx  have

∫  2/1'2/1''' *)*('''' YYdVxnlmxmlnx nlmmlnij  .

From the orthonormality of spin functions:   '2/1'2/1 * YY  it follows, that in all transitions
 ' . Therefore it remains to calculate matrix element

∫ dVxx nlmmlnij  *'''  

and analogically

∫ dVyy nlmmlnij  *'''       ja     ∫ dVzz nlmmlnij  *'''   .

As follows, we demonstrate that from these integrals we get the following selection rules for
spectral transitions

1,0,1  ml  .

In all cases there are three integrals, over r,   and  , because

),()(),,(  lmnlnlm YrRr   .

In spherical coordinates we have

 cos,sinsin,cossin rzryrx   .
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To simplify calculations it is useful instead of x and y take the new variables

  ii eriyxeriyx 
 sin,sin  ,

since  now   , and  z are  expressed  via  the  spherical  functions  ),(1 mY  and  use  the
properties of spherical functions. The result is

),(
3

4
,),(

3

8
,),(

3

8
101111 








 YrzYrYr  

 .

Next we must calculate the following types of integrals

∫∫ 






4

''1''

0

3
'' )()(),,( dYYYdrrrRrRz lmmmlnllnijijij  ,

where   is correspondingly 3/8  , 3/8  or 3/4 .

At first we treat the integrals over the variables    ja  , which are integrated over the solid
angle.

Starting from the matrix elements of z-coordinate, we must calcutale the integral

∫ dYYY lmml 10''  .

Using the relation between spherical functions (§ 17 Example 6), we get

mlzmlzlm YYYY 1110     

(we do not write  here the exact  values of  z  and  z ,  since we are interested mainly in
selection rules). Using these relations, we have

∫ ∫∫  

 



4 4
1''1''

4
10'' dYYdYYdYYY mlmlzmlmlzlmml  .

From the orthonormality of spherical functions, we get, that the result is nonzero, iff

mm '      and     1' ll  ,
or otherwise written

0,1  ml  .

In he case of matrix elements  of   and   we must calculate the integrals

∫  dYYY lmml 11''  ,

which using
111111   mlmlml YYYY   ,

give

∫ ∫∫   dYYdYYdYYY lmmllmmllmml 111111''   .

From those integrals it follows that the result is nonzero, iff
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1' mm      ja     l'=l ± 1  ,
or

Δl=l=± 1 , Δl=m=± 1  .

In conclusion we get the general selection rules for dipole transitions

Δl=l=± 1 , Δl=m=0 , ± 1  ,

(all other dipole transitions are forbidden).

These selection rules are general, since for the quantum number n there are no restrictions, since
the integrals

∫
0

∞

Rn'l±1 Rnl r3 dr

are nonzero for every n and n’ (since the radial functions in some regions always overlapped and
the product is nonzero). From these integrals depend the intensities of corresponding spectral
lines.

Condition Δl=l=± 1 , Δl=m=0  means, that the radiation along the z-axis is linearly polarized, the
radiation along the x- and y-plane has circular polarization ( Δl=l=± 1 , Δl=m=± 1 ).

In many cases we use the total angular momentum

J=L+s  ,

but the selection rules for l and m are the same. Since spin projection does not change, we get
the selection rules

Δl=j= ± 1 , Δl=m j=0 , ± 1  .

Since j=l ±1/2 , the rule Δl=l=± 1  allows also the transition

Δl=j=0  ,

(the same j give different l values (for example j = l + ½ and j = (l+1) – ½)).
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