19. Time independent perturbation theory

There are not much problems which have general analytical solutions. There different
possibilities to solve them using different approximation methods. Here we start with problems
where there are some small perturbations acting in addition to usual forces.
Here we treat the following problem. We assume that we have solved the eigenvalue problem

Hyy, =E)y,
(we know energy E. and corresponding eigenfunctions % , also we assume that for each E
there is only one eigenfunction %, ). We have to solve the next eigenvalue problem

Hy, =E,y,
where

A=A,+0"

and the additional term F7 ~ may be treated as a small perturbation (in each case the smallness of
perturbation must be separately analysed). In general we assume that the additional energy due

to the perturbation is very small compared to energies E, and energy differences between
levels.

19.1 Problem setup. In order to follow our step by step solving method more easily, we write
the energy operator in form

H=H,+}H

where A is some helping parameter, which is useful to to compare the terms of the same order
of values. After solving the problems we at the end take A =1.

We write down the following series expansion
E, =E’+AE' + VE’ +...,
U AT T
After substitution to the original eigenvalue problem
(Hy + AHY? + Ayl + 22 +..) =(E° + AE! + XE? +..)@° + Ayl + 2%p?2 +..)
and equating the terms with the same powers of A , we get
2o Hy) =E)y,,
A: Hy,+Hy) =E}y, +Ew,
A Hyy+Hy, =Ey, +Ey, +Ey)

and so on
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The first of equations is satisfied, since we assumed that the starting eigenvalue problem is
satisfied.

19.2 First order approximation. The next, i.e. the first order approximation is possible to find
from

Hyt+Hy? =E%.+Ely? or (H,- ENy) =(E.- HYy! .

From here we find the first approximation to energy and wave function. The first order to wave
function we express as a series

Wy=2. ay ¥,
( l,l/g is a full ON system of functions).

After substitutions and using the fact that l,ug are the eigenfunctions of H o » We get
2. a,(Ep—Ep) wh=(E,;—H") ) .
m

Multiplying to the (,Ug conjugated and integrating, we obtain

1(p0_ 0\ _pl '

ak( Ek_En)_En 5kn_H kn >
where

- OV A 0
Hkn_ (lljk) H l/Jn av
are the matrix elements of perturbation operator.
Taking k = n, we obtain the first order correction to energy
Erll :Hr:n )

(these are diagonal elements of perturbation operator).

If k #n, we obtain the coefficients to the first approximation of wave function

1
ay =———— .
E’- E)

n

. e 1 . . . .
As we see, one of the coefficients - a,, - remains undetermined. It is determined from the
normalization of the first order wave function

fors + 23 a)* @y + A3 app)dv =1

In the first order approximation of A coefficient a, must satisfy

al +(@a)*=o0 .
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As we see, it is imaginary and for simplicity we may take it equal to zero, therefore we shall take
a, =0.
In conclusion, the first order approximation (A = 1) is

E, =E° +H/

nn

Vo =V, ZEO Eowk -

k #n

19.3 Second order approximation. Let’s calculate the second order energy correction. It is
needed mostly in that case when the first order approximation is equal to zero.

For the second order approximation we use the equation
T 2 2 A R ) 1,1 2,0
Hown + Hwn _Enwn + Enwn + Enwn

2 .
We represent ¥, as a power series
2 2 0
1/]n _Z am l/jm
m

and substitute it together with the first order approximation to the above given equation. We get

Y Eay +H2E Ozpk EOZal/J H,MZ

0
m k#n k k#nE

0

EO 1/)k nlpn

Multiplying from the left with the 7 conjugated and integrating, we have

H H, , H
Al —po vhy, 5 Min o, 4£20,

Efa; + 0 0 0
kmEn - E imEl - Ef

Taking r = n, we get the second order energy approximation

E2=Y nkan Z|an|

0

i En - EX E
Taking I #n, we get the second order coefficients for wave function
2 _Z‘ Hr’kHI;n Hr:nHr;n

a, = -
im(Ey - EDEY - E)) (Ep - EJ)?

Analogically to the first order approximation a, remains to be underdetermined and its is
determined from the normalization condition

f(l// +/‘\’Zaklpk+/‘\’22aka) (1/1 +A’Zaklpk+ﬂ'22aklpk)dv 1

k #n k #n

whic for the second order terms gives
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2 laif+((a})*+a})=0 .

k#n
If we take a’ to be real, we have

"2
2 ]. 112 1 |an|
a=—= al=—=) ———
=3 Zlal="3 2 ooy

Example 1. Oscillator in constant force field. Assume that in addition to elastic force there
acts some constant force F. Its potential energy is
U=—-F x .
It is added to energy operator which we write as
H=-Fx .
Next we treat it as a small perturbation (assuming that F is small).

To find corrections to energy, one must calculate the matrix elements

H;mZ—Ffl//n(x) lem(x) dx=—F x_ .

From the previous paragraphs we know, that we have nonzero elements, if m=n=1 . Therefore
the nonzero matrix elements are

f — fi
AL P

Here we see that the first order energy correction is equal to zero
177" —
E!=H =0 .

nn

Therefore we must examine the next approximation

P 1By P 1Hy

=2,

Y RN
F? 2 2 F?
:_(' Xn,n+1| + xn,n-1| ) =" o
hw 2Mw

Here we have used that E, =#Zw (n+1/2) and the above given matrix elements. As a result we
see, that the energy of all energy levels decreases to the same amount.

Our example was trivial, since the problem can be solved exactly, transforming the general
expression of the total energy
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F2

2 2.2 2 2
+—wa -Fpr +Ma) F 5>
2Mw

H :p_ (X_ )2 -
2M 2 2M 2 Maw?

It means that in the case of additional constant force the equilibrium point of oscillator is shifted
and also the equilibrium point of energy is shifted.

Example 2. Anharmonic oscillator. Assume that the following perturbation

H'=(xx3+ﬁx4

is added to the harmonic oscillator, where & and £ ? Uk)
are some small coefficients. We call it anharmonic
oscillator, since the potential energy is not parabolic.

These anharmonic terms simply follow from the next \
physical considerations. Let us take some arbitrary \
potential energy which is in zero point minimal. In small \ '
deviations from the equilibrium we may it expand as 2

2 3 4
U =Ug + de+ld sz +ld—Ux3 +ld—Ux4 +... .
dx 2! dXZ 3! dX3 4! dx4

Since U, =0 and in minimum point also dU /dx =0 and d*U /dx* =k >0 we have

2
U(x) :T+ocx3+/3x4 +...,

where in higher powers the coefficients are denoted by & and £ .

Atvery small deviations we may it approximate with parabolic potential energy, but if the
deviations increase we must take into account also the next terms.

We start from the cubic term. Since

+0o0

(x3)nn: _f x3lp§ dx=0

—00
we must use the following, second order approximation

o* 5 (X)X

E" =—
" hw“'  (n—n')

Using the x*® matrix elements, given in 15, we after some simple calculations have

2 2
_15h (04 (nz

EH e
AaM3ot

+n+1i) :
" 30

For the next term we have (x*),, #0 . Its matrix elements are calculated as

(3 )= 22 (1) (), = (1) PH (67, P ((60),



and gives that the corresponding energy approximation is

3k’
Eln e 2ﬁ2
2M “w

(n>+n+ 1)2 :
2
Since it is also proportional to the Planck constant square, the both approximations are of the
same order and must be treated together.
The final result is

E, =ho(n +%) +E" +E' =

15%°%a?
AM3w*

11 3n°
n“+n+—)+
( 30 ) 2M *w?

1
=hw(n +E) - (n? +n+%)2 .

It of course depends on & and /3, and on their signs.

20. Time independent perturbation theory(degenerate case)

Next we consider the case, where to the initial system energy level E, there corresponds
several independent states

lrunl 4 wnZ L wnr :
(In H-aatom, for example to E,, corresponds n? different states.)

Now we have
A _ 0 .
Hyy, =E°y. ., i=1,2,...,r ,

but also an arbitrary linear combination

.
0_
wn_ Z € wm
i=1
satisfies the same eigenvalue problem
Ho y,=E, ¢,

20.1 Problem set up. Let us take a new problem where to the pevious Hamiltonian operator
there is added some samaal perturbation operator £7'. The total energy operator is

A

H=H,+H'
and we are interested in problem
Hy=Ey .

In general the degeneracy of states are connected with some symmetries (central symmetry or
others). Usually the perturbation has no such symmetry and for that reason the symmetry is
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breaked and it leads to the splitting of energy levels E, and we get closely laying energy levels
E° +AE, .

Next we analyse of how the energies E, are splitted. We restrict ourselves to the first orde
approximation, which was given in the previous paragraph

(H,—E%) wi=(E:-H") y° .

n n

where v, and E, are the first order improvements. Since we operate in the subspace,
corresponding to E., we take zeroth order wave function %, as an arbitrary linear
combination of functions ¥ ,1> % 2 »---> ¥, . Therefore we analyse the equation

(ﬁo - E;? )Q/Ji :ch(E; - I:I')wnj .
=

Multiplying from left to 2/ ,,; * , we integrate and use [, *%,; dV =0,
At first we demonstrate that then the left side of the previous equality is equal to zero, i.e.
fpu*(Hy - E}y,dV =0 .
If follows from the fact that H, is Hermitean
fitu*(Hy = EDw,dV = [(H, - EDy,)*y,dV =0 .

For that reason the integral from the right side is also equal to zero

jZ:l'Cj ﬁ/"ni *(E, - I:I')wnj av =0 .

Introducing matrix elements

H'ij = ‘ﬁ/jm *H'I/jnj av
(matrix elements in the subspace of functions % 1> %> >---> ¥, ) and taking into account the
orthonormality of ¥ 1> ¥,z 5---> ¥, , we get he following equations

-

1 . _ o
Z(Enéij'Hij)Cj =0, i=1,2,...,r .
j=

It is the linear homogeneous system for coefficients € ;, which is written in the matrix form as

]. 1 1 1

E,-Hy -Hyp - -HY%Y |G
] 1 ] 1

“H'yy  Ep-Hyp oo - HYy G2 g
A} 1 1 1

'Hrl Hr2 En'Hrr Cr
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20.2 Approximations to energy. There are nontrivial solutions, if the determinant of the system
is equal to zero. Denoting ¢ =E ! we have

- H', - H', -H',
-H', £-H'y, - - H',, -0
- H' - H' - H'

rl r2 T rr

From it we have some r-th order equation for €

e"+a e+ +a, =0,

which has r real valued solutions (roots)

€15 Epyenis €

r

(there in general also coincident ones). Therefore, all nonzero solutions €; give us new energy
level
E| =E; +¢, .

i

For each £; one can solve the system and find the corresponding c, , c, ,...,c,, which in
turn gives the wave function

W =20,
j=
That is the zero approximation which must be further used to calculate 7, and E ;. , if needed.

Example 1. Double degeneration. Assume that for E, we have two states %1 > %, . Then

0

l/Jn :Cll/]nl + C21/Jn2 *
One must calculate the determinant

L} Al
€- H'y - H'yp
Al L}
- H'y; €-H'y

=0

and solve the equation (¢ - H';; )(é - H',,)- H';, H',, =0 or
g’ - g(HV11+H'22 ) +H' H',,- H',, H', =0.
We got the quadratic equation ¢ - be +c =0, which has two real number solutions.

Example 2. Stark effect: splitting of spectral lines in external electric field.

As an example we treat the two lowest energy levels of the H-aatom (n = 1 and n = 2) and
demonstrate that there are no splitting for n = 1, but n = 2 level splits to three levels.
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Assume that in addition to Coulomb force on electron acts small external homogeneous
electrical force, caused by the electrical field E =(0, O, E) directed along the z-axis.
Electrical potential is expressed as

olz)=-zE,

therefore the additional potential energy is AU =eEz_ [t means that the following
perturbation

H=¢Ez

is added. That perturbation is indeed small: if we take z =r, (Bohr’s radius) and for
mackroscopic field stregth quite large value E =10° V/m, we get AU ~10"° eV | Coulomb
energy due to the nuclear charge is at the same distance approximately 18 eV.

We consider the splitting of energy levels for n = 2. It has energy

R#h
E)=——=
2 4

2s and 2p give us four total states. We denote them
Yy W05 Wo TWor0s W3 o> Wy Yoy .

Next we must calculate the matrix elements of perturbation Hamiltonian, which in our case are
the following integrals

H'; =eE [y, *zy ;dV =eEz,

As we see, we must calculate the matrix elements from z-coordinate. In §22 (treating the
selection rules) we calculate the matrix elements of x, y and z separately, therefore we here use
the rules which we obteined in §22, that for z-coordinate the only nonzero matrix elements are
those, for which Am =0 and Al ==*1. In our case it means that the only nonzero matrix
elements are

z,, and z, =z, *

Next, using the explicit expressions of wave fuctions, we calculate z,, . The corresponding

wave functions are
B

P, (r,0,@) = 540(1,0,¢) =———(2- —) D
2Jrr0 o

r

1 |
—e “"cosf .

%(r,@,(ﬂ) EWZlo(r’G:(p) :ﬁ
321 T

Since dV =r’drsinfd6de and z =rcos6  we have to calculate three integrals

4 _r 2w
r

OJ‘ r_ —e " dr- fcos fsinf deo - fd(p

12

3271

Integral by ¢ gives 2.t , by @ gives 2/3 (using the substitution u =cos@ ). The remaining
integral is
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1 ® -
r r.a I
z1p = |[(2- —)(—) e ©dr.
24 61. o 1o
Next we substitute X =r/r, and use integrals

fx” e “dx =I'(n+1) =n!
(0]

which gives us
r

f(z_ rL)(rL)4e o dr =ry J'(Z— x)x4e'xdx =-72rg -
0 0 0 0

The final result is
Zyy =Zy =< 3ro .

Nonzero matrix elements of perturbation Hamiltonian therefore are
H',=H', =-3er,E .

In order to find energy correstions ¢ =E, we must calculate the following 4x4 determinant and
equal it to zero

.

t
o m oo
® o o o

Somple calculation gives
e*(e*-H%,)=0.

We have two solutions ¢ =0, whic mean that the energies of states ¥'; =%,,; and ¥, =v,,_,
do not change. The remaining two solutions

= 12 — 4
€15 + VH" _3er0E

mean that in the subspace of states ¥, =%, and ¥» =¥,,, energy levels split and the energies
are

RA R7A
E) =- T+3er0 E, E; =- e 3er, E .
It
° E’; Splitting of 2s and 2p levels is illustrated
E 2 E,i Q2o K2t on the figure.

o
- -
E=0 E+0O

Next we find the corresponding wave functions. For that we must solve the equation
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£ 3er,bE 0 0|
3erpE £ 0 O0|fcy —0

0 0 e 0||cs

0 0 0 ¢ ]lcy

which reduses to
gcy +3ergEc, =0,

3ergEc; +ec, =0,
ecy3 =0,

ecy =0 .

We see that for ¢ =0 we may take the same functions ¥; =¥,,; and ¥, =¥,,.,. For
£,, ==*3er, E we correspondingly get

Y' =Yoo~ Waio  Ja YW T a0 FY o
(unnormed). These functions must be used for the next approximation.

Ground state n = 1. Its energy does not change, because due to the previous conditions ( Am =0
and Al ==1) the matrix element z,, is equal to zero

Zy1 = fzwlzoo dv =0
(there is odd function by z).

Next are given the energy levels befor and after splitting. Instead of one 2p — 1s spectral line
we in electrical field have spectral lines.

(wm=0)
(m=0 +() 2s (WA= 4,~1)
! ‘2f (wm=0)
o
(w=0) ¥ As YYY (m=0)
. O
W, W,
Y ~)
E=0 €40

Example 3. Elementary Zeeman effect (zero spin electron). Suppose we had an atom and its
states are found from

3 0 _r0,.0
HOwnlm _Enlwnlm *

For each energy E . there are on 2] +1 states %5, (degenerate by m).
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In homogeneous magnetix field directed along the z-axis the following perturbation operator

(see §13)

— eB i
2M

z

must be added. Supposing that the perturbation is small we next find the corrections to energy
level E . At first one must find the matrix elements H',,,,. It is easy to verify that the only
nonzero matrix elements are diagonal, i.e. if m'=m. Indeed

eh B

esiiBm -
= . dv = mo,,
Ji/jnlm wnlm 2M m'm .

2M

, _eB wF
H m'm ~ >M ‘ﬁpnlm' Lz lljnlm av

The energy corrections are calculated from

g'H'11 0 .- 0
0 - H' 0
. .2 . | =0,
0 0 e-H',,

which reduces to
(- H'yy)e-H'p) ... (¢- H';; ) =0

We see that first order energy corrections (as in the nondegenerate case) are given in the
following way

e =H' :ehB
2M

m=u, Bm, m=Il,l-1,...,-1,
The eigenfunctions remain the same, since from
(¢- H', )c, =0
that for each ¢ =¢,, we have ¢,, #0, the others are zero.
The result is that each energy level E, splits in magnetic field to 2/+1 levels having energies
Eppm =Ep +ug Bm .

Difference between the neighboring levels AE =u, B is in all cases the same.

m=L
M:‘.z_
(o] AR
Ehﬁ E:(. m:ﬂ
. M3 -2
: m=2-0
-—> -
=0 B+ O
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It is interesting to note that due to the selection rules Al ==1, Am =0, *1 (see §22) we
instead of one spectral line get always three spectral lines (normal Zeeman effect). Example:

transition 3d — 2p.
w=2
™= 4
- 34 wm=9Q
wA=~|
wAz-2
Wo
¢ ‘ ] m=4
PR w=Q
F | \ WA z-4
B-=0 B+0

In conclusion we estimate the magnitude of energy splitting. Since AE =u, B the distance
between levels is small in not very small magntic fields. If, for example, B = 1 T ,we get
AE =9,3 10" 2% J ~6-10"° eV, which is in most cases smaller than the distance between
E. .- E
More detailly we analyse Zeeman effect in §24. Here we neglected the electron intrisic magnetic
moment due to its spin.

nl *

21. Time dependent perturbation theory

Next we start to analyse the perturbations when the perturbation operator depends explicitly
from time

H'=H"'(t) .
The total Hamilton operator

H =H,+H()
depends on time and it means that the total energy of a given system is not conserved (see § 26).
For that reason there are no energy level changes or splittings, but there appear transitions

between different energy levels (radiation or absorption).

21.1 General solution of Schriodinger equation without perturbation. At first we analyse the
solutions without perturbation. If we have eigenvalue problem for H

Hol/Jn :Enlpn

and we assume that it is solved. Then the possible energy values

E .E,,..

and the corresponding stationary eigenfunctions
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lle wz AR
are given.

The general solution of the time dependent Schrédinger equation

o))

inc—=H,¥

'd
ot

is an arbitrary linear combination

w(F, )= coe "y, (F)

where ¢, , ¢, , ... are some arbitrary constants.

21.2 General solution for the time dependent perturbation. Next we assume, that from some
moment, for example, from t = 0 to our system starts to act some time dependent perturbation
H ' (t) . We have to solve the next equation

where
H@) =H, +H'(t)

Since for t < 0 the solution is expressed as an above given linear combination, we start to search
the solution in form
E t

w(7,00=X c(t) e "y (7)

where coefficients ¢, (t) depend on time.

Now we get some differential equation for c¢,(¢). Calculating separately both sides of
Schrodinger equation, we have

. a_lIl_ —%E"t - . an(t)
lhat—zn:e an(r)(Encn(t)+1h—dt )

b

i

(H, +H' ()W =3 c, (e » " (E, +H'(O)p,(r) -

Equalizing, we get

Multiplying from left to ¥,, * (r) and integrating, we get the following equation

i
dcp, () e_ ;E
dt

i
mt -—E,t
in =¥ c (e * H',, ,
where
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H’mn:f wm*ﬁ'(t) wn dV:<l,Um| ﬁ'(t) |‘I/n>
are the matrix elements of perturbation operator (which, of course, depend on time).

At last we move the exponent from left to the right side. Denoting

W :Em_En ,

i

we write the equations for ¢,, (t) in its final form

ihdcm(t) :Z eiwmntvan Cn(t) ,
dt -

wherem=1, 2, ....

The last system of equations is exact and applicable for all perturbations, since we have made no
additional restrictions.

21.3 Small time dependent perturbation. Next we assume that F'(¢) is some small
perturbation. Coefficients ¢, (¢) are expanded as series

c, () 202 +C,1] +C5 +...,
where each next term is one order of values smaller. Small perturbation means, that nonzero
matrix elements H',, are of the same order of values, as ¢, . Substituting coefficients and
equating the terms with the same order of value, we get the next equations

dc?
ih—m =0,
dt
dC:n — iy, t v 0
ih 71 —Ze H' c,,
n
dc’ ;
i =S T, )
n
From the first equation it follows that
¢, =const.

Therefore choosing c,, we are able to calculate step by stem other coefficients c, , ¢? , ....

21.4 First order approximation. At first we start to analyse the situation, when before the
perturbation starts to act (t < 0) our system was in some stationary state with energy E,, .
Therefore we assume, that

c’ =1

and other coefficients c¢? =0 (m #n).

The equations for the first approximation then are
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1
i# ddcm :eiw’""tH'
t

mn

and the simple integration gives
t

iwn, T '
Jé mn® (' dT .
0

1
1

C  —
" in
Since H',, =H",, (t), it is not possible to integrate without the exact form for these matrix

elements.

In textbooks the above given expression is freguently written as

t
‘,'-e iwp,t H', . dt,
(0]

1
Cm

1
)
which is mathematically not quite correct. We have denoted the time under the integral by t.

£ One interesting and important conclusion. If our system is
in some stationary state with energy E, , then after the
time dependent perturbation is applied there open the
possibilities for transitions to other states with other
E. Ex energies E, (E, >E, or E, <E, ) if ¢, #0. The

—_— e —— —

probability of transitionn = m depends on |, |” .

<0 + =20

21.5 Harmonic perturbation. Next we specify the perturbation operator H'(t) . We assume
that the perturbation is harmonic with frequency @ (for example, the external electromagnetic
wave with frequency 0 and wave lenght A is applied) and write H'(t) as

I:I'(t) :ﬁe- it ]f;+ ei(ut
where h is some time independent operator. Matrix elements of our perturbation operator are

_ -iwt + iwt
mn _hmn e + hmn e b}

Hv

where h, =(@p |Al@n) =(hym)* . Inorder to find ¢, one must calculate integral
1 .
Cm == f(e! =Ty 1O TOT R Y
1
0

These integrals are quite elementary:

t (o Fa)T J _ei(wmn Fw)T . i(wm, Fw)t _ 1
_ﬁ T = — 0o — —
0 1 (a)mn +w) 1 (wmn +w)

e

The final result is
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i(wyy - )t _ 1 . e
Cm =~ 7| Mmn +hmn
) Wpp = @ Wy, +o

i(wy, +o)t _ 1

Next we must calculate the probabilities |c},|” of transitions n = m, but before it we give some
general remarks. Usually the frequency @ is large (in the visible light case, for example @ ~
10" 1/s), and therefore for «v # *w,,,, both summands are very small, but if @ — ®,,, (and
w,,, >0), the first summand is large and the second summand is small and it should be
omitted. Therefore, in that case one may analyse the first summand only. Since
w,.., =(E, - E. )/#f, then in the case w,,, >0 there is induced transition from some low
energy level to some higher energy level and the system adsorbs from external radiation one
photon with frequency @ =w,,. But when @®,, <0 we get induced (stimulated) radiation.
Now the first summand is small and the second one large. The frequency of external radiation
equalsto w = w,,, .

Next we analyse the abroption (®,,, > 0). Omitting in ¢,, the second summand, we have

hmn ei(a)mn- w)t _ 1

m_hw

[y

mn -~ @

The corrsponding transition probability is

2 . _ _ _ 2
1 2 |hmn | (el(wmn w)t — 1)(e 1(Wpp - W)t - 1) _2| hmn | (1— COS((L)mn - (L))t) _

C =
‘ ’” 72 (W - @) h2 (W - @)>

. 2 (w,,, - w)t
:4|hmn |2 sin’ m"2

h’ (wmn_a))2

Let us analyse the result more closely. Transition probability depends on the modulus square
| Ay |2 of matrix element h,,, and also from the rapidly oscillating function of frequency @
2 (W - @)t
2 )
2
(a)mn - )

sin

which is nonzero near @ =w,, . Since the perturbation is small, the transition probability
becomes essential after longer time intervals (theoretically, if ¢ = ). Next we demonstrate the
in the limit ¢ = °° the transition probability is proportional to time and we have the resonance
transition, where kus @ =w,,, .

To prove it, we use the following definition of 6 -function

sin” Ax
2 b

d(x) =lim
Ao Ax

which in our case gives
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lim 2 =p(mm S
tﬂooﬂ_(a)mn_ a)) ¢ 2
4

) :25(a)mn -w) .

Therefore, for long time intervals we have

P

mn

1 ‘2 _2ﬂ‘hmn ‘2t
m __mni -

=lim ‘C
t— oo

21.6 Transition probability per time unite. Since the transition probability is proportional to
time, we usually talk about transition probablity per time unit

2
dP,, _2m|hy,]
dr:n - 52 6 (Wpp - @) -

From here it follows that the transition takes place in frequency @ =w,,, which is the
resonance frequency and the probability is proportional to | A,..|” (and which also gives the
intensity of corresponding spectral line).

Instead of frequency one must use energy. Then

den :2ﬂ|hmn |2
dt A

S(E,-E,-hw),
which means that E,, =E, +hw .
It is obvious, that analyzing similarly the radiation processes, we get

.2
d P, _2'7t|hmn|
dt A

S(E,-E,+Aw) *

In the next paragraph we take a closer look to radiation processes and derive the selection rules
for spectral transitions.

22. Radiation transitions, selection rules

22.1 Perturbation due to the external electromagnetic field. Assume, that on atom there acts
some monochromatic electromagnetic wave (for example light wave), whic has the electric field
strength

E =E, cos(wt- k ) .
Since the atomic diameter (d ~ 10~ '*° m) is small, comparing the wave length of light (in the

case of visible light A ~ 10°7 m), the quantity k -r =krcosa =2xrcosa/A in atomic
region does not practically change and we therefore take k -r to be constant (dipole
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approximation). In that case k -r is some constant phase constant, we for simplicity take it
equal to zero. Electrical field strength then changes harmonically having frequency w

E =E, coswt

Connecting the starting point of our coordinate system with nucleous, the electrical potential of
external field is

¢(r)y=-r -E .

(Indeed, if ¢(r) =- (xE, +yE +2zE,) then from E =- grad ¢(r) we obtain the above
given field strength.)

If we assume that electrical field is directed along the z-axis: E =(0, O, E), then
¢(z) =- z -E= zE, coswt ,
and it gives to electron the additional energy
AU((t) =- e¢p(z) =ezE, coswt .
The last expression gives us the following time dependent perturbation operator

ezE,

I:I'(t) =ezEjcoswt = (el®t 4o i®t)

bl

which in turn gives us

+ _e€zE
>

h=h

22.2 Transition probability. In induced transitions, both for «w =w,,, and also for @ =- @,
the transition probability is expressed via the matrix elements of z, as

2 52
dP,, _me Eg

2
dt 72 [ 2o |

where
Zpw =W |z|w,) = fpn*zw,dV .

Directing the field along the x- or y-axis, we analogically obtain

2 2
dP,, _me” Ep

|2 dP,, :.7'1762 E%
dt B2

|2
T dt #2

| Yimn

| Xmn

It means that the transition probabilities are directly connected with matrix elements of radius
vector r =(X, y, z)

I'mn :(an, Ymn, Zmn ) .

It is obvious that the transition is possible (allowed) only in cases, where 7y, #0. If ry, =0,
the transition probability is equal to zero and there are no such transition. Therefore the
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investigation of matrix elements "mn gives us information which transitions are possible and
which ones are forbidden. The restrictions on transitions are called selection rules.

The radiation, we analyze here, is usually called the dipole radiation, since the selection rules
depend on the matrix elements d,,, =er,,, of dipole moment

d =er

In addition to dipole radiation there are another ones: elctrical quadrupole, magnetical dipole and
another radiations which depend on the corresponding parameters. Since these have intensities
which are five to six orders of magnitude smaller from dipole radiation, we do not analyse then
here.

22.3 Radiation transitions. The elementary radiation theory, Anm B:\w\ an

given in 1917 by A. Einstein, it follows that for induced Ew ’|( 1 o )
radiation the probabilities are connected as follows ' w

. N, | |

dP. 5 (@) =B @) _dp, ey | /}7 I{“ "(‘\

dt =b,, P =b,, P - dt ) | ' ' t"\]

E e
where ©(@) was the intensity of external radiation and "~ S?owﬁ-. lwd.

B,, =B,, is the probability of inner (induced) transitions.
We derived the same result from quantum mechanics

b

dPp,, _ne2E3|Z 2 _dP,,
=2 o2 =St
dt # dt

since | z,.,|° =|z..|" . As E characterizes the intensity of external radiation, we have, that
the probability of aromic transitions
B,, =B,, ~|z

mn nm

Therefore, quantum mechanics gives us the prescription to calculate Einstein coefficients.

Einstein theory gives also the relation between spontaneous and induced transitions

2 how?
Anm :—2an :

C

Therefore the calculation of matrix elements of coordinates allows also to analyze the
spontaneous radiation (for example the mean life of exited state).
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Naide 1. Harmonic oscillator. In the case of harmonic oscillator the selection rules are
determined by the matrix elements of x-coordinate

n+ 2. Xmn :<1/jm|x|l)un> :

X Y Using the results of §6 it follows that

)
E, f/, « Xy 20, kui  m=n# -

o

n-4 From that it is obvious that transitions are allowed between
neighbouring levels. In radiation the possible transitions are

n-2 n— n-1 and in absorbing n — n+1. In the first case

energy A is radiated, in the second case the same energy is
absorbed. In conclusion: harmonic oscillator radiates and absorbes energy which is equal to
#Aicw (Planck’s energy quantum).

Naide 2. Atomic transitions. Next we analyse transitions in atoms, when there is transition
from the state | 727 /2 <) with energy E,; to the state | 72" m2' <) with energy Epy.
Since the transition probabilities are determined by the matrix elements of x, y and z, it is easy to
verify that the spin projection on transitions cannot change. Indeed, if we write the states as
|nl m0> :l/)nlm (r’ e’w)Yl/z(r >
| n'l'm'o—' > :I)Un'l'm' (r’ 0’ (p)Yl/Zcr' b
we, for example, for x;; have

Xij :<n'l'm'0'|x|nlmo> =( ~':Z/jn'l'm' *XY m AVIY 0 * Y

From the orthonormality of spin functions: Y1/2o' *Y1/26 =04 it follows, that in all transitions
o'=0 . Therefore it remains to calculate matrix element

Xij = lﬁpn'l'm' * Xwnlm dV
and analogically
yij = »ﬁ/jn'l'm' *ywnlm dV ja Zij = ﬂ”’llm' * anlm dV

As follows, we demonstrate that from these integrals we get the following selection rules for
spectral transitions
Al =1, Am =0, #1

In all cases there are three integrals, over r, & and %, because
wnlm (r’ 8’ (p) :Rnl (r)Y;m (6; (p) .

In spherical coordinates we have

x =rsinfcos@, y =rsinfsing, z =rcosf .
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To simplify calculations it is useful instead of x and y take the new variables
i@

E =x+iy =rsinfe'?, n =x-iy =rsinfe '’ ,

since now £.,77 and z are expressed via the spherical functions Y;,(6,¢) and use the
properties of spherical functions. The result is

8 8 4
£ = [TV 0,0), 1 =Y (0,0), 2 =Y, (0,0) -
3 3 3
Next we must calculate the following types of integrals

(gij > 77i_j > Zij ) = J‘anl-(r)R”, (r)r3dr ) JYl'rn' Ylm" Ylm dQ b
(0]

a4

where O is correspondingly - /87 /3 , V/87/3 or V4x /3.

At first we treat the integrals over the variables & ja %, which are integrated over the solid
angle.

Starting from the matrix elements of z-coordinate, we must calcutale the integral

J“Yl'm' YlO l[Im de2 .

Using the relation between spherical functions (§ 17 Example 6), we get
Yio Yim =, Yie1m + B2 Yi-1m

(we do not write here the exact values of <, and f3,, since we are interested mainly in
selection rules). Using these relations, we have

Jyvl'm' YlO Em dg2 =, J‘le'm' le+1m de2 + /jz Jifl'm' le— 1m d<2 .
47 4 4w

From the orthonormality of spherical functions, we get, that the result is nonzero, iff

m=m and I'=I1=1
or otherwise written
Al =1, Am =0 |

In he case of matrix elements of & and 77 we must calculate the integrals

JYim Yiia Yy, A2
which using
YiaYim = Yiama + LY 1ma ,
give
Pﬁ'm' Y1 Y dS2 = JYI+1mﬂ Yim d€2 + 5 JYI—lmﬂ Yim d<2 .

From those integrals it follows that the result is nonzero, iff
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or

In conclusion we get the general selection rules for dipole transitions
Al=£1, Am=0,=*1 ,
(all other dipole transitions are forbidden).

These selection rules are general, since for the quantum number n there are no restrictions, since
the integrals

R R, re dr

n'l+1

© ~——=38

are nonzero for every n and n’ (since the radial functions in some regions always overlapped and
the product is nonzero). From these integrals depend the intensities of corresponding spectral
lines.

Condition Al=+1, Am=0 means, that the radiation along the z-axis is linearly polarized, the
radiation along the x- and y-plane has circular polarization ( Al==1, Am=%1).

In many cases we use the total angular momentum
_j = i + E )

but the selection rules for I and m are the same. Since spin projection does not change, we get
the selection rules

Aj=+1, Am;=0,+1 .

Since j=I £1/2 ,therule AlI=+ 1 allows also the transition

(the same j give different I values (for example j = [ + %2 and j = (I+1) — %2)).
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