
I Hystorical introduction to quantum mechanics

1.  At  the  beginning  of  the  20th  century,  the  development  of  classical

physics was basically completed. There was an opinion that any physical

phenomenon can be explained within the framework of existing physical

theories.  At least that's  what physicists  thought.  Only two experiments

needed  explanation.

First one is a The Michelson–Morley experiment was performed be-

tween April and July 1887. Are compared the speed of light in perpendicu-

lar directions in order to detect the dependence of the speed of light on the

speed of the light source.  The result was steadily negative. Michelson–Mor-

ley type experiments have been repeated many times with steadily increas-

ing sensitivity.  The result of this experiment showed that the ether does
not exist and the speed of light does not depend on the speed of the light

source. This result cannot be explained within the framework of classical

physics and led later to the appearance new theory - special relativity the-

ory developed by Albert Einstein.

The second one is explanation of the radiation of absolutely black

body. 

2.  The radiation of absolutely black body

We start from some basic definitions. Each body radiate, absorb and

reflect electromagnetic waves. 

Emissivity (radiational capacity)  rω,TT  is the parameter  characterizing

the ability of the body to radiate electromagnetic weaves.  If dWe is the en-

ergy emitted from one square meter of the body per unit of time at tem-

perature T in the frequency range [ω, ω + dω], then the emissivity of the ,  + d ], then the emissivity of theω, ω + dω], then the emissivity of the ω, ω + dω], then the emissivity of the ω, ω + dω], then the emissivity of the
body can be defined:

rω,TT=
dW e

dω

If dWa is the energy absorbed and  dWf is energy falling on one square me-

ter of the body per unit of time at temperature T in the frequency range

[ω, ω + dω], then the emissivity of the ,  + d ], then the  ω, ω + dω], then the emissivity of the ω, ω + dω], then the emissivity of the ω, ω + dω], then the emissivity of the absorption capacity of the body can be defined as:

                                   aω,TT=
dW a

dW f



The ability of the body to absorb energy is indicates which part of the

energy that falls on the surface unit absorbs the body. As we can see right

now, there is a special interest in the study of heat radiation of absolutely

black body. An absolutely black body is a body where a ,Tω, ω + dω], then the emissivity of the  = 1, which

means  that  all  the  incident  energy  is  absorbed  by  the  body  at  all

frequencies from 0 to infinity.

Based on general  thermodynamic  considerations  (if  the  body is  in

thermodynamic equilibrium, this means that the radiated energy is equal to

the  absorbed  energy),  Gustav  Kirchhoff  has  the  following  relationship

between body radiance and absorption capacity: the ratio of radiation and

absorption of all bodies is the same at certain frequency and temperature:

rω ,TT

aω ,T T

=ϵω ,TT

r1

a1

=
r2

a2

=
r3

a3

=ϵω ,T T

where r1 is the emissivity of the body 1 and the absorptive capacity of the

same body a1, the radiant capacity of the body 2 is r2, and the absorbency

of the same body a2, and so on. Since the above-mentioned Kirchhoff law

applies to all bodies, including the absolutely black body  the universal

function ϵω ,TT ,  in the above-mentioned law, is equal to absolute black body

radiant  ability.  In  addition  to  the  emissivity  defined  above,  which

characterizes  the  body's  radiation  at  a  given  frequency,  the  integrated

radiation capability can be reviewed too:

RT=∫
0

∞

rω ,T T d ω

which characterizes the total radiated energy. J. Stefan and L. Boltzmann

showed  that  the  total  radiated  energy  of  an  absolutely  black  body  is

proportional to the fourth degree of absolute temperature

RT=∫
0

∞

rω ,T T d ω=σ⋅T 4

the latter is called Stefan-Boltzmann's law. The Stefan-Boltzmann constant σ
in the formula has a value in the SI system:

 
σ =5,67⋅10−8 W

m2
⋅K 4



As can be seen from the above, the study of thermal radiation actu-

ally comes down to studying the radiation of an absolute black body. If

emissivity (universal function) for absolute black body is defined so we can

define the emissivity for non absolutely black body by measurement of  his

absorption capacity.  For absolutely black body this universal function is

looks like so (this is a results of experimental measurements): 

This  function  depend  on  temperature  and  have  a  maximum  at

frequency ω, ω + dω], then the emissivity of them or wavelength λm .

Position of maximum can be defined by  Wien's displacement law: 

λm⋅T=b,T here b= 2,898⋅10−3 m⋅K

This equation  can be used to estimate the surface temperature of the

Sun. The maximum of spectral function (λm) for Sun is on the wavelength

around 5000 A, this give us the temperature of Sun surface equal to 6000K.

This value is not correct (must be around 8000 K) since the Sun is not a

absolutely black body. But it is very close to it.

Here  appearing   a  conflict  with  classical  physics  (we  have  a

contradiction with classical theory of electromagnetic waves radiation). In

classical physics, the emissivity function is proportional to the frequency

squared. But in this case the integral radiation capability is infinite. This

means that the body must radiate the whole heat energy very quickly and

freezed  to  absolute  zero  temperature.  For  example,  the  human  body



temperature is equal to 310 degrees, is  not a zero, as the classic physics

predicts. 

This paradox was solved in 1900.  

Max  Planck  proposed  the  new

hypothesis which can be used to solve

this  paradox.  What  happens  if  we

suppose  that  the  body  radiate  the

electromagnetic energy discretely by a

little  portions  with  energy
E=n⋅E0 =n⋅ħ⋅ω,Tn=0,1,2,. .. ?  Here  ħ  is

universal  constant  (Planck  constant).

Planck  showed  that  the  emissivity

function  in this case is looks like so:

  

ϵω,TT=
ω2

4 π 2 c2

ħω

e
ħω
kT −1

Here k – Boltzman constant , T – temperature of absolutely black

body. The results of this investigation Planck sent to Einstein. He wrote

that this is just an artificial hypothesis, and Einstein should not take it

seriously (in spite of  that  equation give a correct function of emissivity,

Stefan-Boltzmann law and Wien’s displacement law). But despite of that

Einstein further used this hypothesis to explain the very strange  behavior

of electrons in photo effect. 

2. Photo effect

The photo effect consists in ejecting electrons from the metal surface

under the influence of light. The photo effect was discovered in 1887 by H.

Hertz, a man who experimentally proved the existence of electromagnetic

waves. The basic regularities of the photo effect were determined by P.

Lenard and J.J. Thomson in 1899. It wasn't much possible before, because

electron  was  discovered  only  in  1897  by  J.J.  Thomson.    The  basic

regularities of photo effect are:

1.  The  maximum speed  of  electrons  depends  on  the  frequency  of  the

incident light, but does not depend on the intensity of the light.

2. Each substance has a red border of the photo effect, exist the maximum

wavelength λm of light which does not produce a photo effect.

3. The number of electrons emitted from the metal surface is proportional

to the light intensity.



This results could not be explained from the point of view of classical

electrodynamics.  But  can  be  explained  by  applying  the  new  Planck's

quantum  hypothesis.  That  did  A.  Einstein  at  1905.  He  proposed  that

electrons can absorb electromagnetic waves by portions, quantum of energy,

photons. Energy of one quantum is calculating so:

E0=ħ⋅ω

Based on this,  Einstein  justified the  photo  effect  with a simple  energy

conservation law: the energy of the  photon goes to the electron exit work

“A” and its kinetic energy can be calculated within a formula:

ħ⋅ω=A +
m⋅v2

2

The  first  two  regularities  of  the  photo  effect  immediately  follow

directly  from the  above  formula.  The  Einstein  formula  shows  that  the

electron velocity depends only on the frequency of light but do not depend

on intensity (the probability of two photons absorption is equal to zero for

low intensity of light).

The second regularity stems from the fact that the photo effect can

occur only when the photon frequency  ħ⋅ω≥A,Tω≥
A
ħ
. 

The last regularity can be explained by the fact that the number of

electrons emitted depends on the number of absorbed photons (multiphoton

absorption effects can be neglected due to a low probability).

3. Compton effect

American physicist A.H.Compton in 1922 discovered the new effect for

scattering  of  X-rays  on free  electrons  (how  the  free  electrons  can  be

obtained? It is very simple, there is a lot of their  in metals).  On addition

to the original X-ray with wavelength   were founded the X-ray with largeλ
wavelength    ' > . This effect got the Compton’s name.λ λ

As you see on the figure we have two different

spectrum  components. The first with wavelength λ
give  the  X-ray  spreading  in  original  direction

(original X-ray). The second component (scattered

X-ray) with wavelength '  depends only on theλ
angle of scattering.



The classical theory cannot explain the existence of second component.

The electromagnetic wave is led to vibration of free electrons with the

electromagnetic  wave  frequency  (or  wavelength).   And  these  electron

vibrations  should  not  generate  the  electromagnetic  waves  with  another

frequencies (forced oscillations).  But this effect have a simple and clear

explanation if we present it as a scattering of photons on electrons. In this

case  we  have  two  particles  the  first  one  is  a

photon moving from right side and has frequency

 and with momentum ω, ω + dω], then the emissivity of the p. The second particle is

a fixed electron. After scattering we have electron

moving  with  momentum  pe   and  photon  with

momentum p' and frequency 'ω' .

All that we need use to describe the Compton

effect  is  a  laws  of  momentum  and  energy

conserving.  But  do  not  forget  that

photons and electrons are relativistic

particles  and  we  need  to  use

relativistic mechanics to describe their

motion.

Appendix:  photon  and  electron   energy  and  momentum  calculation.

In this case we have to consider only kinetic energies (because particles are

free).

Calculation of kinetic energy:

For electrons:

E=m⋅c2
 (this is a most famous Einstein equation)-total energy including the

rest energy and kinetic energy. We need subtract the rest energy from total

energy to calculate only kinetic energy.



E=
m0

√(1−
v2

c2 )
⋅c2

=√ (p2
⋅c2 +m0

2
⋅c4) ;Ekin =m⋅c2

−mo⋅c2 =m0⋅c2
⋅( γ−1 ) ,Tγ=

1

√(1−
v2

c2 )

For photons:

E=m⋅c2 =ħ ⋅ω

Momentum:

For electrons:                                For   photons:

p⃗ e =m 0⋅v⃗⋅γ                                 p⃗=m⋅⃗c ;m⋅c2 =ħ ⋅ω;p=
ħ⋅ω

c

End of Appendix                                                     

The application of these formulas give us:

p⃗= p⃗ '+ p⃗e   momentum conserve

ħ⋅ω+m0⋅c2 =ħ ⋅ω'+m⋅c2   energy conserve

The shift  of  wavelength can be calculated directly.  The square of  first

equation give:

p 2
+ p ' 2

− p⋅p '⋅cos ( φ )= p e
2

after the substitution of momentum we get:

(ħ ω )
2
+(ħ ω' )

2
−2ħω⋅ħω' cos (φ ) =pe

2 c2      1. equation

and second equation for energy:

ħ⋅ω−ħ⋅ω'+m0⋅c2 =m⋅c2

ħ2⋅(ω−ω' )
2
+2⋅m0⋅c2⋅(ħ⋅ω−ħ⋅ω' )+m0

2⋅c 4=m2
⋅c4  square of previous equation

ħ2
⋅ω2 +ħ 2

⋅ω'2
−2⋅ħ2ω'ω+2⋅m0⋅c2

⋅(ħ⋅ω−ħ⋅ω' )+m0
2
⋅c4

=m2
⋅c4   2. equation



an additional we can use for total energy  m2 c4 =pe
2 c2 +m0

2 c4

(ħ ω )
2
+(ħ ω' )

2
−2ħ ω⋅ħ ω' cos (φ ) =pe

2 c2      1. equation

(ħ⋅ω)
2
+ (ħ⋅ω' )

2
−2⋅ħ2 ω'ω+2⋅m0⋅c2⋅( ħ⋅ω−ħ⋅ω' )+m0

2⋅c4=m2
⋅c4    2. equation

After the substitutions and simplifications we have the formulas to calculate

the shift of wavelength for Compton effect: 

                 (1−cos (φ ) )⋅
ħ

m0⋅c2
=

1
ω'

−
1
ω

 

and finally:
Δλ=λ0⋅(1−cosφ )

the parameter

λ 0=
h

m0⋅c
=0,024 Α

is a Compton’s  wavelength.

As you see the Compton’s wavelength is  quit little it is means that

the  maximal  change  of  X-ray  wavelength  is  equal  to  2λ0 is  a  little

parameter too. The Compton effect is practically traceable only if the test

wavelength   is  small.  Compton  used  in  his  experiments  X-ray  withλ
wavelength 0,71 Å.

Now we can do some important conclusions about the properties of
waves and particles.

There is a two different types of objects in nature:

First one is a waves.  Waves are characterized by such phenomena as

diffraction (It is defined as the bending of waves around the corners of an

obstacle or aperture into the region of geometrical shadow of the obstacle)

and  interference  (Interference  is  a  phenomenon  in  which  two  waves

superpose  to  form  a  resultant  wave  of  greater,  lower,  or  the  same

amplitude). Wave is not localized phenomenon. We can not define the exact

position of wave but only the amplitude of oscillations on different points

of matter. Very important that the wave diffraction  can be observed only

if the size of obstacles is comparable or less than the length of wave. If the

wavelength is much smaller than the size of the obstacle, the wave can

behave like a particle.



The second is a particles. Unlike waves, particles are well localized. In

classical  physics,  the  position  of  particles  can  be  accurately  calculated

according  to  Newton's  second  law.  Phenomena  such  as  diffraction  and

interference cannot be applied to particles. It is very difficult to present

the interference of two chairs or car diffraction around the pillar.

In  classical  physics,  these  two  objects  (particles  and  waves)  are

qualitatively different and never cannot be combined. But what picture do

we have from the beginning of the last century, when the development of

new  physics  began?  The  electromagnetic  wave  demonstrated  the  wave

behavior and at the same time it can be presented as a set of particles-

photons.  This phenomenon is commonly known as  wave–particle duality,

which means that a particle of matter can be described as a wave and

particle simultaneously. Is it possible to test this hypothesis for electrons? Is

the electron can demonstrate the duality wave-particle? 

According to the proposal  (1924) of  the French physicist  Louis  de

Broglie, electrons and other particles have wavelengths that are inversely

proportional to their momentum.

λ = h / mv

for photons the same formulas can be obtained:

E=m⋅c2 =h⋅ν,Tp=m⋅c,T mass of photon can be calculated  by this way m=
h⋅ν

c2
,T p=

h
λ

Further  electron diffraction experiments  experiments prove the validity of

these assumptions.  

It means that there is no pure particles or pure waves in the universe.

There  is  only  complex  objects  demonstrated  the  dual  wave-particle

behavior. But now we have the next questions.

1. How we have to describe the motion and properties of this new strange

objects.  What about the trajectory of electrons in this case?

The  answer  was  founded  later  in  quantum mechanics.  With  each

particle associated so called wave function denoted as ψ(x ,T y ,T z ,T t) .  The wave

function can be found as a solution to the Schrödinger equation. How it

looks like we will see later. 

Like the function describing the waves for free electrons is looks like

so:  ψ ( x,Ty,Tz,Tt ) =A⋅e
i ( k⃗⋅r⃗−

E
h
⋅t )

. There is different interpretations of wave function



but we accept the classical one.  |ψ ( x,Ty,Tz,Tt ) |⋅dV - is a probability to find the

particle inside of volume dV.  It is clear that in this case ∭
−∞

+∞

| ψ( x ,T y ,T z ,T t)|2⋅dV=1

it  means  that  particle  is  exist  somewhere  in  our  universe  (function  is

normalized on unit).

As you see the wave function have a pure statistical interpretation.

We can not find the exact position of particle but we can find the particle

in the fixed position with  some probability. The quantum theory have a

statistical nature. And we need to use statistical methods to describe the

physical properties. In quantum mechanics, only average values of physical

quantities can be calculated. The general formulas for that is:

< A >=∭
−∞

+∞

ψ(x ,T y ,T z ,Tt )*
⋅Â⋅ψ(x ,T y ,T z ,T t)dV

Here  Â is  so  called  operator  describing  the  physical  properties  of

particle.  In  quantum  mechanics,  every  classical  physical  parameter  is

associated with an operator. For example, instead of energy  we need to

use the Hamilton operator. Instead of momentum  we need use momentum

operator, and so on. Using the previous formulas, we can calculate the

average values of the operators, which can be interpreted as real values,

which can be measured.

Trajectory of particles do not exist and can not be precalculated. Only

the probability to find particle in given point can be calculated. 

2. But as we know from classical mechanics the exact trajectory of particles

is exist at can be calculated within the Newton’s laws. Paradox? What

theory is more general, quantum or classical?

Answer  is: of  course  quantum  theory  is  more  general.  Classical

mechanics can be represented as a special case of quantum theory, as a

limit of it. 

But  how  is  looks  like  the  criteria  of  using  or  not  of  quantum

mechanics?  When we already need to  use  it  and when not  yet?  This

criteria  exist.  This  is  a  Heisenberg  uncertainty  principle.  All  objects  in
universe  are  quantum!!! And  actually  we  always  need  the  quantum

mechanics  to  describe  its  properties.  But  if  the  accuracy  of  physical

measurements  is  not  high  enough  to  detect  the  quantum properties  of

objects,  we  can  use  simple  equations  from  classical  theory  instead  of

quantum mechanics.

But question is: when quantum properties begin to manifest and we

need start to use the quantum theory instead of classic mechanics? 



The Heisenberg uncertainty principle can be used for this aim:

Δ x⋅Δ px≥h

here Δx and Δpx is a uncertainty of coordinate and momentum. I our case it

can  be  interpreted  as  a  precision  of  measurements  of  coordinates  and

momentum. 

Examples:

1. We have the body with mass 50 kg. The position of it can be defined

with precision around 1A=10-10м on the edge of measurement capabilities.

In order to detect the quantum properties of this body, we need to measure

the  velocity  with  an  accuracy  around 10-23m/s.  Very  high  precision.  It

means  that  the  quantum  properties  of  this  macro  objects  can  not  be

detected (the quantum properties are beyond the accuracy of our measuring

instruments). We need just to increase the precision of measurements. And

it can be considered as  a classic object. 

2. Electron moving around atom. Diameter of atom is around 1A. Mass

around 10-30kg. The quantum properties of electrons can be manifested  if

we measure its velocity with precision 1000 km/s. It is very simple to do.

Electron is a pure quantum object and we need to apply the quantum

mechanics  in  this  case.  ven  very  rough  measurements  can  detect  itsЕven very rough measurements can detect its
quantum nature.

Bohr theory for Hydrogen atom.

This a semiclassical theory which  allowed to

describe  the  regularities  of  spectrum  of

hydrogen atom.  We assume that the electron

moves around a proton under the influence of

Coulomb force and the II Newton law is looks

like so in this case:

m⋅an=Fc=
1

4πϵ0

⋅
e2

r2

This is a purely classical equation that cannot

be used directly to describe the motion of a pure quantum object, such as



an electron. Bohr used a mixed quaziclassical approach for the hydrogen

atom. The quantum properties of an electron were taken into account by

introducing  into  the  theory  an  additional  quantization  condition.  He

supposed that  the angular  momentum of  electron must  have a discrete

values and can be calculated so:

m⋅v⋅r=n⋅h

Now we have a complex of two equations that can be used to describe the

motion of an electron around a nucleus.

                  m⋅v2=
1

4 πϵ0

⋅
e2

r
,T m⋅v⋅r=n⋅h

After substituting speed  v =n⋅h /m⋅r  from the second equation into the first

we get the expression for the radius of stationary orbits for electron:

rn=
h2

m⋅b⋅e2
⋅n2 here b=

1
4 πϵ0

As you see the radius is a discrete parameter and depend on only from n.

The of first Bohr orbit n=1 is equal to

 

r0=
h2

m⋅b⋅e2=0,53 A

And has the name Bohr radius.

The speed of electron can be calculated within the framework of Bohr

model:

vn=
b⋅e2

h
⋅

1
n

The speed of electron on the first Bohr orbit is  v1 =b⋅e2
/h=2,2⋅106 m /s . The

latter gives an idea of the electron velocity in atoms.

Now we ready to calculate the total energy of electron for stationary states.

The classical equation can be used: the kinetic energy  

m⋅v2

2  and potential

(this is potential energy of two interacting point charges)  

−b⋅e 2

r  and the

total energy is equal to:



 
E=

m⋅v2

2
−

b⋅e2

r

Because of ring orbit b*e2 /r = mv2   the total energy can be presented in

the next simple form:

E=−
m⋅v2

2

After the substitutions and simplifications we get:

En=−
m⋅b2

⋅e2

2⋅h2 ⋅
1
n2 ,T n=1,2,3,. ..

As you can see, the energy of stationary states of electron also depends on

one integer number n. Since there were other similar dependencies, such

integers began to be called quantum numbers.

This equation can be used to explain the basic regularities of the

spectrum of hydrogen atom.

By knowing the energy, we calculate the spectrum  of the hydrogen

at the transition p  n (from p-level to n-th level). The frequency of the→ n (from p-level to n-th level). The frequency of the
emitted photon is calculating so:

ω=
Ep−En

h
=

m⋅b2
⋅e4

2⋅h3 (
1
n2 −

1
p2 )

Compared  to  the  Balmer  formula,  the  Rydberg

constant equals:

R=
m⋅b2

⋅e4

2⋅h3

Using  this  constant,  we  can  write  energy  more

briefly

En=−R⋅h⋅
1

n2



Next, we will provide a diagram for stationary states of electron in

hydrogen atom and explain the generation of spectral lines by hydrogen

atom.

The Lyman series arises from electron transitions from higher levels to

the lowest energy states. In this case n=1 and p>n

The  Balmer series, located in the visible spectrum, is arises as the

result  of  transition of electron from higher states  to the second energy

level. Now n=2 and p>n

And so on.

Finally, we can find hydrogen ionization energy. This is the minimum

energy that must be given to the electron  to remove it from the hydrogen

atom (a free proton-electron system is produced). The electron is no longer

proton bound as the total energy of the electron E ≥ 0. Therefore, the

ionization energy is: Ei=R⋅h=13,6 eV .


