
Quantum Mechanics Problems and Solutions

1 Schrödinger Equation for Tunneling Effect (E
¡ U0)

Question: What does the Schrödinger equation and the continuity conditions
looks like for the tunneling effect in the case E smaller than U0? Derive equations
for a rectangular barrier.

Solution:
Consider a particle with energy E encountering a rectangular potential bar-

rier:

• Region I (x ¡ 0): V(x) = 0

• Region II (0 ≤ x ≤ L): V(x) = U0 (where E ¡ U0)

• Region III (x ¿ L): V(x) = 0

1.1 Time-Independent Schrödinger Equation

The one-dimensional Schrödinger equation is:

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (1)

Let’s solve this for each region:
Region I (x ¡ 0):

d2ψI(x)

dx2
+

2mE

ℏ2
ψI(x) = 0 (2)

With k =
√

2mE
ℏ2 , the general solution is:

ψI(x) = Aeikx +Be−ikx (3)

Where Aeikx represents the incident wave and Be−ikx the reflected wave.
Region II (0 ≤ x ≤ L):

d2ψII(x)

dx2
− 2m(U0 − E)

ℏ2
ψII(x) = 0 (4)
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With α =
√

2m(U0−E)
ℏ2 , the general solution is:

ψII(x) = Ceαx +De−αx (5)

These exponential solutions (rather than oscillatory) characterize the evanes-
cent wave inside the barrier.

Region III (x ¿ L):

d2ψIII(x)

dx2
+

2mE

ℏ2
ψIII(x) = 0 (6)

With the same k as in Region I, the solution is:

ψIII(x) = Feikx (7)

We only include the forward-traveling wave since there’s no reflection from
the right.

1.2 Continuity Conditions

For a physically valid solution, both the wave function and its first derivative
must be continuous at the boundaries.

At x = 0:

ψI(0) = ψII(0) (8)

A+B = C +D (9)

ψ′
I(0) = ψ′

II(0) (10)

ik(A−B) = α(C −D) (11)

At x = L:

ψII(L) = ψIII(L) (12)

CeαL +De−αL = FeikL (13)

ψ′
II(L) = ψ′

III(L) (14)

α(CeαL −De−αL) = ikFeikL (15)

1.3 Transmission Coefficient Derivation

To find the transmission probability, we need to solve these four equations for
the coefficients and calculate:

T =
|F |2

|A|2
(16)
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From equations (11) and (12), we can express C and D in terms of F:

CeαL +De−αL = FeikL (17)

α(CeαL −De−αL) = ikFeikL (18)

Multiplying the first equation by α and adding to the second:

2αCeαL = FeikL(α+ ik) (19)

Therefore:

C =
FeikL(α+ ik)

2αeαL
(20)

Similarly, we can find D:

D =
FeikL(α− ik)

2αe−αL
(21)

Substituting these into equations (9) and (10), and after algebraic manipu-
lation, we get:

T =
4k2α2

4k2α2 + (k2 + α2)2 sinh2(αL)
(22)

For thick or high barriers (αL≫ 1), this simplifies to:

T ≈ 16k2α2

(k2 + α2)2
e−2αL (23)

This exponential dependence on barrier width L is the hallmark of quantum
tunneling and explains why the tunneling probability becomes extremely small
for macroscopic objects or thick barriers.

2 Infinite Potential Well

Question: Show that the probability current density (or wavefunction) inside
of the walls (areas 1 and 3) should be zero? Why?

Solution:
Let’s examine why the probability current density must be zero inside the

walls of an infinite potential well.

2.1 Infinite Potential Well Setup

For an infinite potential well, we have:

• Region 1 (x ¡ 0): V(x) = ∞

• Region 2 (0 ≤ x ≤ L): V(x) = 0

• Region 3 (x ¿ L): V(x) = ∞
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2.2 Wave Function in the Regions

First, let’s consider what happens to the wave function in regions 1 and 3 where
V = ∞.

The time-independent Schrödinger equation is:

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (24)

In regions 1 and 3 where V = ∞:

− ℏ2

2m

d2ψ(x)

dx2
+∞ · ψ(x) = Eψ(x) (25)

This equation can only be satisfied if:

ψ(x) = 0 (26)

Since any non-zero value multiplied by infinity would be infinite and could
not equal the finite energy E.

2.3 Probability Current Density

The probability current density j(x) is defined as:

j(x) =
ℏ

2mi
[ψ∗(x)

dψ(x)

dx
− ψ(x)

dψ∗(x)

dx
] (27)

Or in a simpler form:

j(x) =
ℏ
m
Im[ψ∗(x)

dψ(x)

dx
] (28)

Now, in regions 1 and 3, we’ve established that ψ(x) = 0. When we substi-
tute this into the probability current density equation:

j(x) =
ℏ

2mi
[0 · dψ(x)

dx
− 0 · dψ

∗(x)

dx
] = 0 (29)

Therefore, the probability current density in the regions where V = ∞ is
zero.

2.4 Physical Interpretation

This result makes physical sense for several reasons:

1. No Probability: Since ψ(x) = 0 in the infinite potential regions, the
probability density |ψ(x)|2 = 0, meaning there is zero probability of find-
ing the particle in these regions.
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2. No Flow: The probability current density represents the flow of proba-
bility. Since no probability exists in these regions, there can be no flow of
probability.

3. No Tunneling: Unlike finite barriers where tunneling can occur, infi-
nite barriers completely prevent the particle from entering the forbidden
regions.

4. Conservation of Probability: Since particles cannot exist within or
beyond the infinite barriers, the total probability must be contained within
the well, requiring zero current at the boundaries.

In essence, the infinite potential creates an impenetrable boundary for the
quantum particle, forcing both the wave function and the probability current
to be zero in these regions.

3 Finite Potential Well

Question: Why zero energy solution (E=0) of equation tan
(
a
√

2mE
ℏ2

)
=

2
√

E(U0−E)

2E−U0

should be ignored?
Solution:
Let’s analyze why the zero energy solution (E=0) of the transcendental equa-

tion should be ignored for a finite potential well.
For the E = 0 case:

1. Left side: When E = 0, we have tan

(
a
√

2m(0)
ℏ2

)
= tan(0) = 0

2. Right side: When E = 0, the numerator becomes 2
√
0 · (U0 − 0) =

2
√
0 = 0

And the denominator becomes 2(0)− U0 = −U0

So the right side evaluates to 0
−U0

= 0

While mathematically both sides equal zero (suggesting E = 0 could be
a solution), there are important physical reasons why this solution should be
ignored:

1. Wavefunction behavior: For E = 0, the wavefunction inside the well
would have to be a straight line (constant or linear function), which cannot
satisfy both continuity conditions at the boundaries.

2. Normalization issue: A particle with exactly zero energy would have
an infinite de Broglie wavelength, making proper normalization of the
wavefunction impossible within a finite well.

3. Physical reality: A particle with E = 0 would have no kinetic energy
inside the well and would not exhibit quantum confinement properties.
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4. Mathematical singularity approach: As E approaches 0, the equation
approaches a special case that requires careful limit analysis rather than
direct substitution.

5. Analytical derivation assumption: The transcendental equation was
derived assuming E ¿ 0, as the bound state energies of interest are positive
values less than U0.

The E = 0 case represents a boundary case that falls outside the valid range
of the transcendental equation’s physical interpretation for bound states. This
is why we ignore the E = 0 solution when solving for the energy levels of the
finite potential well.

4 Classical Harmonic Oscillator

Question: Show that for classical harmonic oscillator average value of kinetic
and potential energies are equal: ⟨Ek⟩ = ⟨Epot⟩. PS! The classical expression

for calculate average value of classical physical quantity is ⟨A⟩ = 1
T

∫ T

0
A(t)dt

where T is the averaging time.
Solution:
I’ll demonstrate that for a classical harmonic oscillator, the average kinetic

energy equals the average potential energy.

4.1 Classical Harmonic Oscillator Properties

For a classical harmonic oscillator:

• Position varies as: x(t) = A cos(ωt+ ϕ) where A is amplitude, ω is angular
frequency

• Velocity is: v(t) = −Aω sin(ωt+ ϕ)

• Force is: F = −kx

• ω =
√

k
m where k is the spring constant and m is mass

4.2 Energies of the Harmonic Oscillator

Kinetic Energy:

Ek(t) =
1

2
mv2(t) (30)

=
1

2
m(−Aω sin(ωt+ ϕ))2 (31)

=
1

2
mA2ω2 sin2(ωt+ ϕ) (32)
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Potential Energy:

Ep(t) =
1

2
kx2(t) (33)

=
1

2
kA2 cos2(ωt+ ϕ) (34)

Since k = mω2, we can rewrite the potential energy as:

Ep(t) =
1

2
mω2A2 cos2(ωt+ ϕ) (35)

4.3 Time Averages

The classical time average of a physical quantity A(t) is:

⟨A⟩ = 1

T

∫ T

0

A(t)dt (36)

where T is the period of oscillation. For the harmonic oscillator, T = 2π
ω .

Average Kinetic Energy

⟨Ek⟩ =
1

T

∫ T

0

1

2
mA2ω2 sin2(ωt+ ϕ)dt (37)

Let’s use ωt+ ϕ = u, so dt = du
ω :

⟨Ek⟩ =
1

T

∫ ωT+ϕ

ϕ

1

2
mA2ω2 sin2(u)

du

ω
(38)

=
1

T
· 1
2
mA2ω

∫ 2π+ϕ

ϕ

sin2(u)du (39)

Since the period is T = 2π
ω :

⟨Ek⟩ =
ω

2π
· 1
2
mA2ω

∫ 2π+ϕ

ϕ

sin2(u)du (40)

Using the identity sin2(u) = 1−cos(2u)
2 :

⟨Ek⟩ =
ω

2π
· 1
2
mA2ω

∫ 2π+ϕ

ϕ

1− cos(2u)

2
du (41)

=
ω

2π
· 1
4
mA2ω

[
u− sin(2u)

2

]2π+ϕ

ϕ

(42)

Since sin(2(ϕ+ 2π)) = sin(2ϕ):

⟨Ek⟩ =
ω

2π
· 1
4
mA2ω · 2π (43)

=
1

4
mA2ω2 (44)
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Average Potential Energy

⟨Ep⟩ =
1

T

∫ T

0

1

2
mω2A2 cos2(ωt+ ϕ)dt (45)

Following similar steps as above and using cos2(u) = 1+cos(2u)
2 :

⟨Ep⟩ =
ω

2π
· 1
2
mω2A2

∫ 2π+ϕ

ϕ

1 + cos(2u)

2
du (46)

=
ω

2π
· 1
4
mω2A2

[
u+

sin(2u)

2

]2π+ϕ

ϕ

(47)

=
ω

2π
· 1
4
mω2A2 · 2π (48)

=
1

4
mω2A2 (49)

4.4 Comparison of Averages

We’ve found:

⟨Ek⟩ =
1

4
mA2ω2 (50)

⟨Ep⟩ =
1

4
mω2A2 (51)

Therefore:
⟨Ek⟩ = ⟨Ep⟩ (52)

This proves that for a classical harmonic oscillator, the average kinetic en-
ergy equals the average potential energy over a complete cycle. This is a man-
ifestation of the virial theorem for this specific potential and demonstrates the
equal sharing of energy between kinetic and potential forms in simple harmonic
motion.

5 Heat Capacity for 1D Chain of Atoms

Question: Potential energy of interacting nearby atoms in a 1d crystal is looks
like: V = 1

2g
∑

n(un − un−1)
2. Get the expression for force acting on atom

with number k+1. Here un - displacement of atom with number n from its
equilibrium position.

Solution:
I’ll derive the expression for the force acting on atom k+1 in a one-dimensional

chain where atoms interact with their nearest neighbors through a harmonic po-
tential.
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5.1 Starting with the Potential Energy

The potential energy of the 1D crystal is given by:

V =
1

2
g
∑
n

(un − un−1)
2 (53)

Where:

• un is the displacement of atom n from its equilibrium position

• g is the spring constant

• The sum runs over all atoms in the chain

5.2 Force Calculation

The force on an atom is the negative gradient of the potential energy with
respect to the atom’s displacement:

Fk+1 = − ∂V

∂uk+1
(54)

Let’s expand the potential energy sum and identify all terms that contain
uk+1:

V =
1

2
g
∑
n

(un − un−1)
2 (55)

The terms in this sum that involve uk+1 are:

1. The term where n = k+1: (uk+1 − uk)
2

2. The term where n = k+2: (uk+2 − uk+1)
2

Let’s calculate the derivative with respect to uk+1 for each of these terms:
For the first term (n = k+1):

∂

∂uk+1
(uk+1 − uk)

2 = 2(uk+1 − uk) (56)

For the second term (n = k+2):

∂

∂uk+1
(uk+2 − uk+1)

2 = −2(uk+2 − uk+1) (57)

Now we can calculate the force:

Fk+1 = − ∂V

∂uk+1
(58)

= −1

2
g [2(uk+1 − uk)− 2(uk+2 − uk+1)] (59)
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Simplifying:

Fk+1 = −g(uk+1 − uk) + g(uk+2 − uk+1) (60)

= g(uk+2 − 2uk+1 + uk) (61)

This is the force acting on atom k+1. It depends on the displacement of
atom k+1 as well as its nearest neighbors k and k+2.

This result makes physical sense: if atom k+1 is exactly halfway between
atoms k and k+2, the force is zero. If it’s closer to one of its neighbors, it
experiences a restoring force proportional to the displacement difference, in
accordance with Hooke’s law.
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