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6. Show that as U0 → 0, the transmission coefficient

T (E) → 1 for both cases E > U0 and E < U0.

Case 1: E > U0

The transmission coefficient is given by:

T (E) =
4k21k

2
2

4k21k
2
2 cos

2(k2a) + (k21 − k22)
2 sin2(k2a)

where

k1 =

√
2mE

ℏ2
, k2 =

√
2m(E − U0)

ℏ2
As U0 → 0, so k2 → k1, and thus:

k21 − k22 → 0

This simplifies the expression to:

T (E) → 4k41
4k41

= 1

Case 2: E < U0

The transmission coefficient is:

T (E) =
4k21k

2
2

4k21k
2
2 cosh

2(k2a) + (k21 + k22)
2 sinh2(k2a)

where

k2 =

√
2m(U0 − E)

ℏ2
As U0 → 0, k2 → 0. Taylor expansions for small arguments:

cosh(k2a) ≈ 1 +
(k2a)

2

2
, sinh(k2a) ≈ k2a

Substituting into the denominator:
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cosh2(k2a) ≈ 1 + (k2a)
2, sinh2(k2a) ≈ (k2a)

2

Thus, the denominator becomes:

4k21k
2
2(1 + (k2a)

2) + (k21 + k22)
2(k2a)

2

As k2 → 0, the terms involving (k2a)
2 vanish, and it simplifies to:

4k21k
2
2

So:

T (E) → 4k21k
2
2

4k21k
2
2

= 1

8. Show that the probability current density (or wave-

function) inside the walls (areas 1 and 3) of an infinite

potential well should be zero, and explain why.

The probability current density J(x, t) is defined as:

J(x, t) =
ℏ

2mi

(
ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x

)
where:

• ℏ is the reduced Planck constant,

• m is the mass of the particle,

• ψ(x, t) is the wavefunction.

In regions outside the well, the potential U(x) is infinite:

U(x) = ∞ for x ≤ 0 or x ≥ L

the time-independent Schrödinger equation:

− ℏ2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x)

Substituting U(x) = ∞ leads to:
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∞× ψ(x) = Eψ(x) + (finite terms)

For the equation to remain finite on both sides, the only solution is:

ψ(x) = 0

If ψ(x) ̸= 0, the left side would be infinite, which is impossible. Therefore
the probability of finding the particle there is zero.

Since ψ(x) = 0 and ∂ψ
∂x = 0, substituting into the expression J(x, t) gives:

J(x, t) = 0

18. Should the wave function inside the walls of a fi-

nite potential well be a complex number or a real num-

ber? What is your opinion, and why?

The general solution in this region is:

ψ(x) = Aeκx +Be−κx

where

κ =

√
2m(U − E)

ℏ2
is a positive real constant since U > E (bound state). Since both eκx and
e−κx are real functions, and the coefficients A and B can be taken to be real
as well, the wave function ψ(x) itself can be real. Complex exponentials are
needed when U < E and the solution is oscillatory.

28. How can we calculate the energy of a harmonic

oscillator at a non-zero temperature?

Note: Thermal motion is fully chaotic and can be described by a random
force acting on an oscillating point mass. Ideas from the calculation of heat
capacity in a 1D crystal lattice may be helpful.

The average energy Ē of a harmonic oscillator is:

Ē = ℏω
(

1

eℏω/kT − 1

)
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where:

• ℏ is the reduced Planck constant,

• ω is the angular frequency of the oscillator,

• k is the Boltzmann constant,

• T is the absolute temperature.

This result comes from the Bose-Einstein distribution, which gives the
average occupation number n̄ of the energy levels (for phonons and protons):

n̄ =
1

eℏω/kT − 1

The total thermal energy is then obtained by integrating over all vibra-
tional modes. In 1D crystal models, this leads to:

Ētot =
2N

π

∫ ω0

0

ℏω√
ω2
0 − ω2

1

eℏω/kT − 1
dω

where:

• N is the total number of atoms,

• ω0 is the maximum vibrational frequency ω0 =

√
4g

m

31 Show that the functions ω(q) = ω0 ·
∣∣sin (qa2 )∣∣ and

ω
(
q + 2π

a

)
describe the same harmonic wave uk,q(t) = Aq ·

ei(ω(q)t+qak).(By other words, show that uk,q(t) = uk,q+2π
a
(t).)

We are asked to show that:

uk,q(t) = uk, q+ 2π
a
(t)

where:

uk,q(t) = Aq e
i(ω(q)t+qak)

and
ω(q) = ω0

∣∣∣sin(qa
2

)∣∣∣
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Substituting q + 2π
a instead of q, we get:

uk, q+ 2π
a
(t) = Aq+ 2π

a
ei(ω(q+

2π
a )t+(q+ 2π

a )ak)

Expanding the phase:

= Aq+ 2π
a
ei(ω(q+

2π
a )t+qak+2πk)

Since ei2πk = 1 for any integer k, we simplify:

= Aq+ 2π
a
ei(ω(q+

2π
a )t+qak)

Comparing ω(q) and ω
(
q + 2π

a

)
ω

(
q +

2π

a

)
= ω0

∣∣∣∣sin((q + 2π
a )a

2

)∣∣∣∣ = ω0

∣∣∣sin(qa
2

+ π
)∣∣∣

Using:

sin(x+ π) = − sin(x)

Thus:

sin
(qa
2

+ π
)
= − sin

(qa
2

)
Taking the absolute value:∣∣∣sin(qa

2
+ π

)∣∣∣ = ∣∣∣− sin
(qa
2

)∣∣∣ = ∣∣∣sin(qa
2

)∣∣∣
Thus:

ω

(
q +

2π

a

)
= ω(q)

substituting back, we have:

uk, q+ 2π
a
(t) = Aq+ 2π

a
ei(ω(q)t+qak)

If we choose:

Aq+ 2π
a
= Aq

then:
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uk, q+ 2π
a
(t) = uk,q(t)
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