
1. How is looks like Schrodinger equation for tunnel effect (topic
4.3) for regions I,II, and III ? Derive equations.

The time-independent Schrödinger equation in one dimension is

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = E ψ(x).

For a rectangular barrier of height V0 extending from x = 0 to x = a, we
split space into three regions:

Region I: x < 0, V (x) = 0

− ℏ2

2m
ψ′′(x) = E ψ(x) =⇒ ψ′′(x) + k2 ψ(x) = 0, k =

√
2mE

ℏ
.

General solution:
ψI(x) = Aeikx +B e−ikx.

Region II: 0 ≤ x ≤ a, V (x) = V0

− ℏ2

2m
ψ′′(x)+V0 ψ(x) = E ψ(x) =⇒ ψ′′(x)+q2 ψ(x) = 0, q2 =

2m(E − V0)

ℏ2
.

For the tunneling case E < V0, define κ =
√

2m(V0 − E)/ℏ. Then the
equation becomes

ψ′′(x)− κ2 ψ(x) = 0,

with solution
ψII(x) = C eκx +D e−κx.

Region III: x > a, V (x) = 0 Again

ψ′′(x) + k2 ψ(x) = 0, k =

√
2mE

ℏ
.

If we assume only a transmitted wave to the right,

ψIII(x) = F eikx.
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Continuity conditions at x = 0 and x = a:

ψI(0) = ψII(0) : A+B = C +D,

ψ′
I(0) = ψ′

II(0) : ik(A−B) = κ(C −D),

ψII(a) = ψIII(a) : Ceκa +De−κa = Feika,

ψ′
II(a) = ψ′

III(a) : κ
(
Ceκa −De−κa

)
= ik Feika.

Solving for B and F (with A = 1 for convenience) gives

B =
(k2 + κ2) sinh(κa)

−2 i k κ cosh(κa) + (k2 − κ2) sinh(κa)
, F =

2 i k κ e−ika

2 i k κ cosh(κa) + (k2 − κ2) sinh(κa)

Since F ̸= 0, there is a nonzero transmitted amplitude—i.e. particles have
a finite probability to “tunnel through” the barrier.

11. Why the solution for quantum number n = 0 must be ignored?
Give a physical justification

The wave functions are

ψn(x) = A sin
(
nπx/L

)
,

with corresponding energies

En =
ℏ2π2n2

2mL2
.

Here n is a positive integer.

If we set n = 0, then

ψ0(x) = A sin(0) = 0 everywhere.

That means the wave function is identically zero, so the probability den-
sity |ψ0(x)|2 is zero everywhere. There is no chance of finding the particle
anywhere.

Physical justification:

• A wave function must be normalizable and nontrivia so that
∫
|ψ|2dx =

1.
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• The n = 0 solution has
∫
0 dx = 0, so it cannot be normalized to unity.

• It carries no probability and hence does not represent a real physical
state.

Therefore, we discard the n = 0 solution and start with n = 1, 2, 3, . . ., each
of which gives a valid, nonzero wavefunction and a real energy.

18. Should the wave function inside the walls of a finite potential
well be a complex number or a real number? What is your opinion,
why?

In quantum mechanics the most general wave function Ψ(x, t) is a complex-
valued function. However, when we solve the time-independent Schrödinger
equation for bound states in a finite potential well, we often write

Ψ(x, t) = ψ(x) e− iEt/ℏ,

where the spatial part ψ(x) satisfies

− ℏ2

2m

d2ψ

dx2
+ V (x)ψ(x) = E ψ(x).

Since V (x) is real, this ordinary differential equation has real coefficients.
Consequently:

• Any complex solution ψ(x) can be multiplied by a global phase eiθ

without changing physical predictions.

• We are free to choose that global phase so that ψ(x) is real everywhere
inside and outside the well.

Physical Opinion: Although the full wave function Ψ(x, t) must be com-
plex (to carry time dependence and relative phases), the spatial bound-state
functions ψ(x) can—and usually are—chosen real. This choice simplifies
matching boundary conditions at the walls (ψ and ψ′ continuous) without
losing any physics, because:

1. The real and imaginary parts of any solution each satisfy the same
Schrödinger equation.
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2. A real ψ(x) already carries all information about the probability density
|ψ(x)|2.

3. There is no net probability current for a stationary bound state, so no
phase gradient is needed in ψ(x).

In summary, fundamentally the quantum state is complex, but for bound-
state eigenfunctions of a real potential one usually picks the spatial part real
for simplicity and clarity.

22. Calculate the mean value of the momentum px for the quantum
harmonic oscillator. Use tabular integrals from lectures as needed.
Compare your result with the corresponding mean momentum for
the classical harmonic oscillator.

The stationary eigenfunctions of the one-dimensional harmonic oscillator are

ψn(x) =
1√
2nn!

(
mω

πℏ

)1/4

Hn

(√
mω
ℏ x

)
e−

mωx2

2ℏ ,

with energy En = ℏω (n+ 1
2
). The momentum operator is

p̂x = − iℏ
d

dx
.

We wish to compute

⟨px⟩n =

∫ +∞

−∞
ψ∗
n(x)

(
−iℏ d

dx

)
ψn(x) dx.

1. Notice that for each n, ψn(x) is either an even function (if n even) or
an odd function (if n odd). Hence

ψ∗
n(x)

dψn(x)

dx

is an odd function of x.
2. The integral of any odd function over the symmetric interval (−∞,+∞)

vanishes: ∫ +∞

−∞

[
odd(x)

]
dx = 0.
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3. Therefore

⟨px⟩n = − iℏ
∫ +∞

−∞
ψ∗
n(x)

dψn(x)

dx
dx = 0.

For a classical oscillator of mass m, angular frequency ω, and amplitude
A, the position and momentum are

x(t) = A cos(ωt+ ϕ), p(t) = mẋ(t) = −mωA sin(ωt+ ϕ).

The time-average of p(t) over one period T = 2π/ω is

p =
1

T

∫ T

0

p(t) dt = − mωA

T

∫ T

0

sin(ωt+ ϕ) dt = 0.

Both in the quantum case (for any energy level n) and in the classical
case, the average (mean) momentum over a full cycle vanishes:

⟨px⟩n = 0, p = 0.

This reflects the symmetry of the motion: there is no net drift in either
direction over one full oscillation.

37. Can you show that (for a 1D crystal) the phase and group
velocities of harmonic waves become equal in the limit of very long
wavelengths (λ→ ∞)?

Consider a one-dimensional monatomic crystal of atoms of massM connected
by springs of constant C, with lattice constant a. The dispersion relation for
small oscillations is

ω(k) = 2

√
C

M

∣∣∣sin(ka
2

)∣∣∣.
The phase velocity is

vph(k) =
ω(k)

k
=

2

k

√
C

M

∣∣∣sin(ka
2

)∣∣∣,
and the group velocity is

vg(k) =
dω

dk
= 2

√
C

M

d

dk

∣∣∣sin(ka
2

)∣∣∣ = a

√
C

M
cos

(
ka
2

)
.
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In the long-wavelength limit k → 0 (so λ = 2π/k → ∞), we use the
small-angle approximations

sin
(
ka
2

)
≈ ka

2
, cos

(
ka
2

)
≈ 1.

Substituting into the velocities gives

vph(k) ≈
2

k

√
C

M

ka

2
= a

√
C

M
,

vg(k) ≈ a

√
C

M
× 1 = a

√
C

M
.

Hence

vph(k) → a
√

C
M

and vg(k) → a
√

C
M

as k → 0,

showing that the phase and group velocities coincide for very long wave-
lengths.
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