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1.

Potential Barrier Setup

Assume a potential barrier V() as follows:

® Regionlz <0,V(z)=0
e Regionll:0 <z <a, V(z)=
e Regionll:z >a, V(z) =0

Schrodinger Equation

The time-independent Schrédinger equation is given by: — R d(z) V(z)y(z) = EY(z)

2m dmz

Region l: z < 0

In this region, the potential V' (z) = 0, so the Schrédinger equation simplifies to: —2—2 d’ :i’; ) = E¢(x)
The general solution is: 1y (x) = Ae™*® + Be ** where k = 21;12E_

Regionll: 0 <z < a
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In this region, the potential V' (z) = V}, so the Schrédinger equation becomes: — ;fm %@m +

Vourr(z) = Evrr(x) Rewriting, we get: ﬁ’”( ) = 2m( W’ )y 1(z) Letk = 2m(V° ) then the

general solution is: ¢ () = Ce™ + De_’“B

Region lll: z > a

B ()
2m  dz? -

In this region, the potential V' (z) = 0, so the Schrédinger equation simplifies again to: —
Err(x) The general solution is: 17 (2) = Fe'*® + Ge™

8.
Infinite Potential Well Setup

Consider an infinite potential well with walls at z = 0 and = L. The potential V' (z) is defined as:

e V(z)=0for0 <z <L
e V(z)=o0oforz <0andz > L

Wavefunction Inside the Well

2
Inside the well (0 < z < L), the Schrédinger equation is: _ R dd) Evy(z)

2m  dx?

The solutions to this equation are sinusoidal functions: 1, (z) = \/% sin (”‘EI) where n is a positive

integer.



Probability Current Density

The probability current density J () is given by: J(z) = % (@b*(m)%ﬁjﬂ — w(x]wd—f))

For the wavefunctions inside the well, we have: ¥, (z) = 2 sin (

nmwe )
L

L

Since ¥, () is real, 1*(z) = 1(z). Therefore, the probability current density simplifies to: J(z) =
dy d

2 (V@) %2 - y(2)%2) =0

Inside the Walls (Areas 1 and 3)

Inareas 1 (xz < 0) and 3 (x > L), the potential is infinite. This means the wavefunction 1 (x) must be zero in
these regions because the probability of finding the particle in an area with infinite potential is zero.
Therefore:p(z) =0 for <0 and z>1L

Since ¥(z) = 0 in these regions, the probability current density J(z) is also zero: J(z) =0 for z <
0 and z>L

Why is J(z) Zero?

The probability current density represents the flow of probability. In regions with infinite potential, the
wavefunction is zero, indicating no probability of finding the particle there. Consequently, there is no flow of

probability, and thus the probability current density is zero.

16.
Finite Potential Well Setup

Consider a finite potential well with potential V' (z) defined as:

e V(z)=0forz <0andz >a
e V(z)=Vyfor0 <z <a

Schrodinger Equation
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The time-independent Schrédinger equation for a particle in a potential well is: —Qh—m dfm{f) +

V(2)t(z) = Ey(z) |
Regions

e Regionl(z < 0):V(z)=0
e Regionll(0 <z <a)V(z)=V
e Regionlll (z > a):V(z) =0



Zero Energy Solution

_ 24/E(Uh—E)

The equation given is: tan (%) = —SET,

For E = 0:

e The left-hand side becomes tan(0) = 0.

24/0(U6—0) 0

¢ The right-hand side becomes —50-U, =

Why Ignore £ = 0?
1. Physical Interpretation: A zero energy solution implies that the particle has no kinetic energy. In
quantum mechanics, a particle in a potential well must have some kinetic energy to exist within the well.
Zero energy would mean the particle is stationary, which contradicts the principles of quantum

mechanics where particles exhibit wave-like behavior.

2. Wavefunction Behavior: For E = 0, the wavefunction ¥ (z) would not exhibit the oscillatory or
exponential decay behavior expected in a potential well. Instead, it would be a constant or zero, which

does not satisfy the boundary conditions of the well.

3. Normalization: The wavefunction must be normalizable, meaning the total probability of finding the
particle within the well must be 1. A zero energy solution would not yield a normalizable wavefunction.
Conclusion

The zero energy solution is ignored because it does not align with the physical and mathematical
requirements of a particle in a finite potential well. The particle must have some non-zero energy to exhibit

the expected quantum behavior and satisfy the boundary conditions.

26.

Harmonic Oscillator Setup

2
The Schrédinger equation for a one-dimensional harmonic oscillator is: _ K d¥(z) + %mw2m21j)(m) =

2m  dz?
E(z)
Power Series Solution

The wave function 1)(z) can be expressed as a power series: ¥(§) = > a,£" where { = /T

2F

a, where A = £=.

The recurrence relation for the coefficients a, is given by: a, .5 = %



Limiting the Power Series

The power series solution should be limited for the following reasons:

1. Normalization: The wave function must be normalizable, meaning the total probability of finding the
particle must be finite. If the series is not limited, the wave function may diverge, leading to an infinite
probability, which is physically meaningless.

2. Physical Boundaries: The harmonic oscillator potential grows infinitely as = increases. The wave function

must decay to zero at large & to ensure the particle is confined within the potential well. Limiting the

series ensures the wave function exhibits this decay.

3. Eigenvalues and Eigenfunctions: The harmonic oscillator has discrete energy levels. The power series
solution corresponds to these quantized energy levels. Limiting the series ensures that the wave function

corresponds to a specific eigenvalue E,,.

Conclusion

It is necessary to take into account only a limited number of terms in the series to ensure the wave function is
normalizable, decays appropriately at large «, and corresponds to the discrete energy levels of the harmonic

oscillator.

31.

Harmonic Wave Function
The function given is: a(g) = g sin (qa%)

We need to show that this function and the condition ¢ + ¢’ = %” describe the same harmonic wave:
u, (t) — Aknez‘(mt—kﬂm)

Wave Function Equivalence

To show that ug, (t) = wuk, _,, , (t). we need to demonstrate that the wave functions are equivalent under the

given conditions.

1. Wave Vector Relationship: Given g + ¢ = %” we can write: ¢ = %” —q
2. Substitute ¢’ into a(q): a(q’) = agsin ((%” — q) a%) Simplifying: @(q') = ag sin (ﬂ'a — qa%)
3. Using Trigonometric Identity: Using the identity sin(m — z) = sin(z), we get: a(¢') = ag sin (qa%)

Therefore: a(q') = a(q)
Harmonic Wave Function Equivalence

Since (g) and a(g’) describe the same function, the harmonic wave functions uy, (¢) and uy, _,, , () are

equivalent ug, () = ug,_,, , (1)



Heat Capacity for 1D Chain of Atoms

For a one-dimensional chain of atoms, the heat capacity can be derived using the phonon model. The heat

capacity C at temperature T is given by: C' = zk (83};7})) where (E},) is the average energy of the

phonon mode with wave vector k.



