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1 Question 3

Consider a rectangular potential barrier of height V0.
In classical physics, particles either have enough energy to go over the barrier

or they don’t.
Thus:

T (E) =

{
0 if E < V0,

1 if E > V0
, R(E) = 1− T (E) (1)

In quantum mechanics, even when E < V0, the particle has a non-zero
probability of appearing on the other side of the barrier. The transmission
coefficient in the quantum case for E < V0 is approximately:

T (E) ∝ e−2κa (2)

where a is the width of the barrier and

κ =

√
2m(V0 − E)

ℏ
. (3)

This shows that the probability of tunneling decreases exponentially with
both the barrier width a and the energy difference V0 − E.

2 Question 10

n = 1 : ⟨x⟩ = 0, ⟨x2⟩ = 3

2
· ℏ
mω

, ⟨v2⟩ = 3

2
· ℏω
m

n = 2 : ⟨x⟩ = 0, ⟨x2⟩ = 5

2
· ℏ
mω

, ⟨v2⟩ = 5

2
· ℏω
m

(4)

3 Question 18

The wavefunction can be either real or complex inside the walls of a finite
potential well. Both are mathematically valid:

ψ(x) = A sin(kx) +B cos(kx) (real form) (5)
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or
ψ(x) = Ceikx +De−ikx (complex form) (6)

where

k =

√
2mE

ℏ
. (7)

In quantum mechanics, the full wavefunction is typically written as:

Ψ(x, t) = ψ(x)e−iEt/ℏ. (8)

Even if ψ(x) is real, the total wavefunction is complex due to time evolution.
Complex exponentials correspond to definite momentum states p = ℏk, while
real combinations are superpositions of momenta. Complex wavefunctions sim-
plify calculations in quantum phenomena like tunneling.

Inside the walls of a finite potential well, I would prefer real-valued wave-
functions for bound states, because they are easier to interpret, directly reflect
the standing wave nature of the bound state, and are mathematically simpler
for normalization and boundary conditions.

However, if dealing with time-dependent problems, complex wavefunctions
are necessary.

4 Question 27

The ground state wavefunction of the quantum harmonic oscillator is:

ψ0(x) =
(mω
πℏ

)1/4

exp

(
−mωx

2

2ℏ

)
. (9)

We wish to compute the following integral:

⟨x2⟩ =
∫ ∞

−∞
x2|ψ0(x)|2 dx. (10)

Substituting the wavefunction:

⟨x2⟩ =
∫ ∞

−∞
x2

(mω
πℏ

)1/2

exp

(
−mωx

2

ℏ

)
dx. (11)

Recall the integral:∫ ∞

−∞
x2e−ax2

dx =

√
π

2a3/2
, for a > 0. (12)

Let a = mω
ℏ , then:

⟨x2⟩ =
(mω
πℏ

)1/2

×
√
π

2
(
mω
ℏ
)3/2 =

ℏ
2mω

. (13)
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5 Question 33

The density of states (DOS), g(ω), describes the number of vibrational modes
per unit frequency at a given angular frequency ω. It tells us how the vibrational
energy is distributed across different frequencies in the system.

The function g(ω) quantifies the number of vibrational states that a system
can occupy at a certain frequency. For example, in a solid, g(ω) represents how
phonons1 are distributed across different frequencies.

The density of vibrational states, g(ω), is defined such that

g(ω) dω (14)

gives the number of vibrational modes with frequencies between ω and ω+dω.
For a one-dimensional chain of N atoms with a mass m connected by springs

with a spring constant g, the phonon dispersion relation is

ω(k) = 2

√
g

m

∣∣∣∣sin(ka2
)∣∣∣∣ , (15)

where a is the lattice spacing.
The maximum angular frequency is

ω0 = 2

√
g

m
=

√
4g

m
. (16)

The corresponding density of states is

g(ω) =
N

π

1√
ω2
0 − ω2

, 0 ≤ ω ≤ ω0. (17)

We wish to compute:∫ ω0

0

g(ω) dω =

∫ ω0

0

N

π

1√
ω2
0 − ω2

dω =
N

π

∫ ω0

0

dω√
ω2
0 − ω2

. (18)

Using the standard integral:∫ u

0

dx√
u2 − x2

=
π

2
, (19)

where u = ω0, we get: ∫ ω0

0

dω√
ω2
0 − ω2

=
π

2
. (20)

1A phonon is a collective excitation in condensed matter that quantizes vibration modes
in elastic structures. Phonons can be thought of as quanta of lattice vibrations and are an
essential concept in understanding thermal and mechanical properties of solids. In mathe-
matical notation, phonons are often represented by the symbol q or k, where q represents the
wavevector and k is the crystal momentum.
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Thus: ∫ ω0

0

g(ω) dω =
N

π
× π

2
=
N

2
. (21)

Since each vibrational mode in 1D corresponds to one degree of freedom per
atom, and we have two modes, left-moving and right-moving, per k-point, the
total number of modes is N .

Thus, the result N
2 corresponds to half the vibrational modes. When taking

into account both k and −k directions, we would recover exactly N modes total.
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