75

1 General Eigenvalue Problem in Quantum Me-
chanics

In quantum mechanics, an observable is represented by an operator A, and its
eigenvalue equation is given by:

Ay = \p

where 1 is the eigenfunction and A is the corresponding eigenvalue.
The momentum operator in the z-direction is given by:

d
5, = —ih-"
P ‘ dzr

Solving the eigenvalue equation:

Path(z) = pi()

leads to the differential equation:

it = py
which has solutions of the form:
W(z) = Aei*®
where the eigenvalues are:
p=hk

These eigenvalues represent the possible momentum values of the particle.
The kinetic energy operator is given by:

. ~2 h2 d2
P
2m 2m dx?

The corresponding eigenvalue equation:

Tijp(x) = Ey(x)

results in: o
_LM = Ey

2m dx?

Substituting 1 (z) = Ae’** into the equation, we get:

hk?
= By
m
Thus, the eigenvalues are:
hk?
E =
2m
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which represent the kinetic energy of the system.
The wavefunctions used in both eigenvalue problems are the same (plane

waves €'#*), because the kinetic energy operator is derived from the momentum
2
operator. Since kinetic energy depends on momentum via the relation 7' = 2,

any eigenfunction of p, must also be an eigenfunction of T.

e The eigenvalues of p, correspond to the possible momentum values of the
quantum system.

e The eigenvalues of T correspond to the possible kinetic energy values.

The eigenvalues of both operators are real. This is because:

e Physical quantities such as momentum and kinetic energy must be real
for meaningful measurements.

e The operators p, and T are Hermitian, ensuring that their eigenvalues are
always real.

e If an operator representing a physical observable had complex eigenvalues,
the results of measurements would not correspond to real physical values.

Thus, the eigenvalues of both p, and T are necessarily real.

2 Proof that the Potential Energy Operator is
Hermitian

For a quantum harmonic oscillator, the potential energy operator is given by:

2

mw?3?

V:

N =

where m is the mass of the particle, w is the angular frequency, and z is the
position operator.
An operator A is Hermitian if it satisfies:

(W|Ag) = (A|o)

for all wavefunctions ¢ and ¢ in the Hilbert space.
Since the position operator & is known to be Hermitian, it satisfies:

(V]2g) = (T|¢)
Now, consider the potential energy operator:

V = Zmw?3?

[N
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Applying it to a wavefunction ¢:
. 1 X
(0170) = ([ gmeao)

Since %mwQ is a real constant, it can be factored out:

X 1 .
WIV9) = smu (i)
Using the fact that & is Hermitian: HyOU have to proof it

(Vli*¢) = (1*)]¢)

Thus, we obtain:
. 1 R
(WIV6) = 5me?(@#2019)
Since this expression is of the form (V|¢), we conclude that:

W[Ve) = (Vo)

which proves that V is Hermitian.

Since the potential energy operator V satisfies the Hermitian condition for all
wavefunctions ¢ and ¢, it follows that V is a Hermitian operator. This ensures
that the potential energy has real eigenvalues that correspond to physically
meaningful energy measurements.

3 Can you show (explain) that for a highly lo-
calized wave function (which allows one to
precisely determine the position of a parti-
cle), the momentum of that particle cannot be
accurately measured (calculated)? NB! The

20

movement of particles is free and one-dimensional.

In quantum mechanics, the Heisenberg uncertainty principle states that the
uncertainties in position Az and momentum Ap, satisfy the relation:

Azlp, > g

where 7 is the reduced Planck’s constant.

This implies that as the uncertainty in position Az decreases, the uncertainty
in momentum Ap, must increase.

A highly localized wave function means that the particle’s position is known
with high precision, i.e., Ax is very small. Mathematically, this can be repre-
sented by a wave packet that is sharply peaked in real space.
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For example, consider a wave function that approximates a Dirac delta func-
tion:
P(z) = 0(z — x0)
This means the particle is almost exactly at position xg, so Az — 0.
The momentum-space wave function is given by the Fourier transform of the
position-space wave function:

_ 1 > —ipx/h
Y(p) fﬁ/—mw(x)e Pr/h g

For a sharply peaked 1 (x), this integral spreads over a wide range of mo-
menta, meaning &(p) is broadly distributed.

Since ¥(z) is highly localized, its Fourier transform z/N)(p) must be widely
spread. This results in a large uncertainty in momentum:

Ap, — 00

Thus, when position is precisely determined (Az — 0), the momentum uncer-
tainty increases dramatically.

This result is a direct consequence of the wave-particle duality. A localized
wave packet requires a superposition of many momentum components, making
it impossible to determine a precise momentum value. Physically, this means
that a free particle whose position is well-defined does not have a well-defined
momentum, as its wave function contains a broad spectrum of momentum val-
ues.

We have shown that for a highly localized wave function, the momentum
of the particle becomes highly uncertain. This is a fundamental consequence
of Heisenberg’s uncertainty principle, illustrating that precise knowledge of a
particle’s position inherently prevents precise knowledge of its momentum.

4 32. For stepped barrier: Show that for poten-

tial barrier for (E>UO0) the flux of particles
In quantum mechanics, the probability current density (or flux) describes the
flow of probability associated with a quantum state. It is defined as:

) h LAY dayp*
I omi (1/) dm_wdx>
For a stepped potential barrier, we analyze the probability flux of incident and
reflected particles when the energy of the particle is greater than the barrier
height (E > Uy).
Consider a one-dimensional step potential barrier given by:

V(z)_{o, <0

U(), LUZO
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For an incident plane wave traveling towards the barrier from the left (z < 0),
the wavefunction is: _ _
wl(m) — Aezklz 4 Be—lklz
where:
2mE
h
Here: - Ae'*1% represents the incident wave with amplitude A. - Be~i12

represents the reflected wave with amplitude B.
Using the definition of probability current density:

h *
(v -v2)
€Z

2mz

k1 =

For the incident wave 1; = Ae**1% we calculate:

dy;
dzr

= iky A1

Thus, the probability current density of the incident wave is:

ji ZZZ (A* 7zk1w(lk Aezkla:) Aeikla:(_iklA*efiklm))
h 2 . 2
= 5 (kAP = (=iki|A]))
hk
= 5= (2iki|AfF) = |4

Thus, the probability flux for the incident wave is:

. hk
i = — |A|2

For the reflected wave 1, = Be_““‘l”7 we calculate:

dipr

— —ik:B —ik1x
dx e

The probability current density for the reflected wave is:

jR 2 (B* 2k1ZL’( ileef’Lklz) o Be*lklw(ile*ezklz))
ma
h ; . flk’
" 2mi (=i | B + ik | BJ?) = == |B|2

Thus, the probability flux for the reflected wave is:



For a particle encountering a step potential with E > Ujy: - The probability

flux of the incident wave is: .
. 1
ji = —A?

m

- The probability flux of the reflected wave is:

D

|BJ”
m

Jjr =

This result shows that the probability flux is conserved, as expected in quan-
tum mechanics.

5 26. Heisenberg uncertainty principle. Derive
it B 10

The Heisenberg Uncertainty Principle states that the product of the uncer-
tainties in position and momentum measurements cannot be arbitrarily small.
Mathematically, it is expressed as:

AxAp > g (1)

We start with the definitions of the standard deviations of position and
momentum:

(Az)? = (2?) — (x)?, (2)
(Ap)* = (") — (n)*. (3)
Using the Schrodinger representation, the position and momentum operators

are:
T =, (4)
d
p= —ih—. 5
p=—ili— (5)
For any two operators A and B, the commutator is defined as:

[A,B] = AB — BA. (6)
For position and momentum, we have:
[z, p] = ih. (7)

Using the Cauchy-Schwarz inequality in Hilbert space:

(Y| A%|e) (Y| B?[y) > il@l[AvB]Iw)lQ- (8)
Substituting A = x — (z) and B = p — (p), we get:
(Ax(8p)? > Ll ) )

[=p}
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Since ([z,p]) = ih, we obtain:

AzAp > —. (10)

| S

The Heisenberg Uncertainty Principle imposes a fundamental limit on the
precision of simultaneous measurements of position and momentum, arising di-
rectly from the non-commutativity of quantum operators.





