
1 General Eigenvalue Problem in Quantum Me-
chanics

In quantum mechanics, an observable is represented by an operator Â, and its
eigenvalue equation is given by:

Âψ = λψ

where ψ is the eigenfunction and λ is the corresponding eigenvalue.
The momentum operator in the x-direction is given by:

p̂x = −ih̄ d

dx

Solving the eigenvalue equation:

p̂xψ(x) = pψ(x)

leads to the differential equation:

−ih̄dψ
dx

= pψ

which has solutions of the form:

ψ(x) = Aeikx

where the eigenvalues are:
p = h̄k

These eigenvalues represent the possible momentum values of the particle.
The kinetic energy operator is given by:

T̂ =
p̂2x
2m

= − h̄2

2m

d2

dx2

The corresponding eigenvalue equation:

T̂ψ(x) = Eψ(x)

results in:

− h̄2

2m

d2ψ

dx2
= Eψ

Substituting ψ(x) = Aeikx into the equation, we get:

h̄2k2

2m
ψ = Eψ

Thus, the eigenvalues are:

E =
h̄2k2

2m
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which represent the kinetic energy of the system.
The wavefunctions used in both eigenvalue problems are the same (plane

waves eikx), because the kinetic energy operator is derived from the momentum

operator. Since kinetic energy depends on momentum via the relation T = p2

2m ,

any eigenfunction of p̂x must also be an eigenfunction of T̂ .

• The eigenvalues of p̂x correspond to the possible momentum values of the
quantum system.

• The eigenvalues of T̂ correspond to the possible kinetic energy values.

The eigenvalues of both operators are real. This is because:

• Physical quantities such as momentum and kinetic energy must be real
for meaningful measurements.

• The operators p̂x and T̂ are Hermitian, ensuring that their eigenvalues are
always real.

• If an operator representing a physical observable had complex eigenvalues,
the results of measurements would not correspond to real physical values.

Thus, the eigenvalues of both p̂x and T̂ are necessarily real.

2 Proof that the Potential Energy Operator is
Hermitian

For a quantum harmonic oscillator, the potential energy operator is given by:

V̂ =
1

2
mω2x̂2

where m is the mass of the particle, ω is the angular frequency, and x̂ is the
position operator.

An operator Â is Hermitian if it satisfies:

⟨ψ|Âϕ⟩ = ⟨Âψ|ϕ⟩

for all wavefunctions ψ and ϕ in the Hilbert space.
Since the position operator x̂ is known to be Hermitian, it satisfies:

⟨ψ|x̂ϕ⟩ = ⟨x̂ψ|ϕ⟩

Now, consider the potential energy operator:

V̂ =
1

2
mω2x̂2
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Applying it to a wavefunction ϕ:

⟨ψ|V̂ ϕ⟩ =
〈
ψ

∣∣∣∣12mω2x̂2ϕ

〉
Since 1

2mω
2 is a real constant, it can be factored out:

⟨ψ|V̂ ϕ⟩ = 1

2
mω2⟨ψ|x̂2ϕ⟩

Using the fact that x̂ is Hermitian:

⟨ψ|x̂2ϕ⟩ = ⟨x̂2ψ|ϕ⟩

Thus, we obtain:

⟨ψ|V̂ ϕ⟩ = 1

2
mω2⟨x̂2ψ|ϕ⟩

Since this expression is of the form ⟨V̂ ψ|ϕ⟩, we conclude that:

⟨ψ|V̂ ϕ⟩ = ⟨V̂ ψ|ϕ⟩

which proves that V̂ is Hermitian.
Since the potential energy operator V̂ satisfies the Hermitian condition for all

wavefunctions ψ and ϕ, it follows that V̂ is a Hermitian operator. This ensures
that the potential energy has real eigenvalues that correspond to physically
meaningful energy measurements.

3 Can you show (explain) that for a highly lo-
calized wave function (which allows one to
precisely determine the position of a parti-
cle), the momentum of that particle cannot be
accurately measured (calculated)? NB! The
movement of particles is free and one-dimensional.

In quantum mechanics, the Heisenberg uncertainty principle states that the
uncertainties in position ∆x and momentum ∆px satisfy the relation:

∆x∆px ≥ h̄

2

where h̄ is the reduced Planck’s constant.
This implies that as the uncertainty in position ∆x decreases, the uncertainty

in momentum ∆px must increase.
A highly localized wave function means that the particle’s position is known

with high precision, i.e., ∆x is very small. Mathematically, this can be repre-
sented by a wave packet that is sharply peaked in real space.
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For example, consider a wave function that approximates a Dirac delta func-
tion:

ψ(x) ≈ δ(x− x0)

This means the particle is almost exactly at position x0, so ∆x→ 0.
The momentum-space wave function is given by the Fourier transform of the

position-space wave function:

ψ̃(p) =
1√
2πh̄

∫ ∞

−∞
ψ(x)e−ipx/h̄dx

For a sharply peaked ψ(x), this integral spreads over a wide range of mo-
menta, meaning ψ̃(p) is broadly distributed.

Since ψ(x) is highly localized, its Fourier transform ψ̃(p) must be widely
spread. This results in a large uncertainty in momentum:

∆px → ∞

Thus, when position is precisely determined (∆x → 0), the momentum uncer-
tainty increases dramatically.

This result is a direct consequence of the wave-particle duality. A localized
wave packet requires a superposition of many momentum components, making
it impossible to determine a precise momentum value. Physically, this means
that a free particle whose position is well-defined does not have a well-defined
momentum, as its wave function contains a broad spectrum of momentum val-
ues.

We have shown that for a highly localized wave function, the momentum
of the particle becomes highly uncertain. This is a fundamental consequence
of Heisenberg’s uncertainty principle, illustrating that precise knowledge of a
particle’s position inherently prevents precise knowledge of its momentum.

4 32. For stepped barrier: Show that for poten-
tial barrier for (E>U0) the flux of particles
....

In quantum mechanics, the probability current density (or flux) describes the
flow of probability associated with a quantum state. It is defined as:

j =
h̄

2mi

(
ψ∗ dψ

dx
− ψ

dψ∗

dx

)
For a stepped potential barrier, we analyze the probability flux of incident and
reflected particles when the energy of the particle is greater than the barrier
height (E > U0).

Consider a one-dimensional step potential barrier given by:

V (x) =

{
0, x < 0

U0, x ≥ 0
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For an incident plane wave traveling towards the barrier from the left (x < 0),
the wavefunction is:

ψ1(x) = Aeik1x +Be−ik1x

where:

k1 =

√
2mE

h̄

Here: - Aeik1x represents the incident wave with amplitude A. - Be−ik1x

represents the reflected wave with amplitude B.
Using the definition of probability current density:

j =
h̄

2mi

(
ψ∗ dψ

dx
− ψ

dψ∗

dx

)
For the incident wave ψi = Aeik1x, we calculate:

dψi

dx
= ik1Ae

ik1x

Thus, the probability current density of the incident wave is:

ji =
h̄

2mi

(
A∗e−ik1x(ik1Ae

ik1x)−Aeik1x(−ik1A∗e−ik1x)
)

=
h̄

2mi

(
ik1|A|2 − (−ik1|A|2)

)
=

h̄

2mi

(
2ik1|A|2

)
=
h̄k1
m

|A|2

Thus, the probability flux for the incident wave is:

ji =
h̄k1
m

|A|2

For the reflected wave ψr = Be−ik1x, we calculate:

dψr

dx
= −ik1Be−ik1x

The probability current density for the reflected wave is:

jR =
h̄

2mi

(
B∗eik1x(−ik1Be−ik1x)−Be−ik1x(ik1B

∗eik1x)
)

=
h̄

2mi

(
−ik1|B|2 + ik1|B|2

)
= − h̄k1

m
|B|2

Thus, the probability flux for the reflected wave is:

jR = − h̄k1
m

|B|2
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For a particle encountering a step potential with E > U0: - The probability
flux of the incident wave is:

ji =
h̄k1
m

|A|2

- The probability flux of the reflected wave is:

jR = − h̄k1
m

|B|2

This result shows that the probability flux is conserved, as expected in quan-
tum mechanics.

5 26. Heisenberg uncertainty principle. Derive
it

The Heisenberg Uncertainty Principle states that the product of the uncer-
tainties in position and momentum measurements cannot be arbitrarily small.
Mathematically, it is expressed as:

∆x∆p ≥ h̄

2
. (1)

We start with the definitions of the standard deviations of position and
momentum:

(∆x)2 = ⟨x2⟩ − ⟨x⟩2, (2)

(∆p)2 = ⟨p2⟩ − ⟨p⟩2. (3)

Using the Schrödinger representation, the position and momentum operators
are:

x̂ = x, (4)

p̂ = −ih̄ d

dx
. (5)

For any two operators A and B, the commutator is defined as:

[A,B] = AB −BA. (6)

For position and momentum, we have:

[x, p] = ih̄. (7)

Using the Cauchy-Schwarz inequality in Hilbert space:

⟨ψ|A2|ψ⟩⟨ψ|B2|ψ⟩ ≥ 1

4
|⟨ψ|[A,B]|ψ⟩|2. (8)

Substituting A = x− ⟨x⟩ and B = p− ⟨p⟩, we get:

(∆x)2(∆p)2 ≥ 1

4
|⟨[x, p]⟩|2. (9)
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Since ⟨[x, p]⟩ = ih̄, we obtain:

∆x∆p ≥ h̄

2
. (10)

The Heisenberg Uncertainty Principle imposes a fundamental limit on the
precision of simultaneous measurements of position and momentum, arising di-
rectly from the non-commutativity of quantum operators.
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