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Question 1

What is the physical interpretation and units of the wave function in
1D, 2D, and 3D?

The wave function Ψ(r, t) describes the quantum state of a particle. Its
squared modulus, |Ψ(r, t)|2, represents the probability density of finding a par-
ticle at a given position and time.

For different spatial dimensions, the wave function follows:

• 1D: Ψ(x, t), probability dP = |Ψ(x, t)|2dx, units: m−1/2.

• 2D: Ψ(x, y, t), probability dP = |Ψ(x, y, t)|2dxdy, units: m−1.

• 3D: Ψ(x, y, z, t), probability dP = |Ψ(x, y, z, t)|2dxdydz, units: m−3/2.

These units ensure that the probability remains dimensionless when inte-
grated over space.

Question 15

Given the eigenvalue problem for the Hamiltonian operator:

Ĥψn = Enψn, (1)

where ψn is a set of orthonormal eigenfunctions of Ĥ, express the gen-
eral solution for an arbitrary state function ϕ as a linear combination
of eigenfunctions. How can the coefficients cn be calculated?

Answer

Since the set of eigenfunctions {ψn} forms a complete basis, any state function
ϕ can be expressed as:

ϕ =
∑
n

cnψn. (2)
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To find the expansion coefficients cn, we take the inner product with ψn:

cn = ⟨ψn|ϕ⟩ =
∫
ψ∗
n(x)ϕ(x) dx. (3)

These coefficients represent the projection of ϕ onto the eigenfunctions ψn and
determine the contribution of each eigenstate to ϕ.

Question 24

Calculate the average (⟨x⟩n, ⟨p⟩n) and exact (xn, pn) values for a free
particle in 1D. Are there any issues with these calculations? If so,
why?

Answer

For a free particle in 1D, the wave functions are typically plane waves:

ψn(x) =
1√
L
eiknx, (4)

where kn = 2πn
L . The expectation values are:

⟨x⟩n =

∫
x|ψn(x)|2 dx, (5)

which is undefined for a free particle due to uniform probability distribution
over all space. The momentum expectation value is:

⟨p⟩n =

∫
ψ∗
np̂ψn dx = h̄kn. (6)

Exact values of position and momentum cannot be simultaneously well-defined
due to the Heisenberg uncertainty principle. The issue arises because the posi-
tion expectation value is undefined, and a plane wave does not correspond to a
localized particle.

Question 30

Is there a fundamental limitation on the lower limit of the error of
physical measurements in classical physics?

Answer

In classical physics, there is no fundamental lower limit to measurement er-
rors. Theoretically, measurements can be made arbitrarily precise, limited only
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by technological constraints, experimental imperfections, and external distur-
bances. Unlike quantum mechanics, where the Heisenberg uncertainty principle
imposes a fundamental limit on precision, classical physics assumes that with
perfect instruments and conditions, exact values of physical quantities can be
determined.

Question 32

Show that for a potential barrier with E > U0, the flux of incident
particles (probability density current) moving towards the barrier is
given by:

ji =
h̄k1A

2

m
, where k1 =

√
2mE

h̄
. (7)

Answer

The probability current density is defined as:

j =
h̄

2mi

(
Ψ∗ dΨ

dx
−Ψ

dΨ∗

dx

)
. (8)

For a plane wave solution describing an incident particle moving towards the
barrier:

Ψ(x) = Aeik1x, (9)

where k1 =
√
2mE
h̄ .

Substituting this into the probability current density equation:

ji =
h̄

2mi

(
A∗e−ik1xik1Ae

ik1x −Aeik1x(−ik1A∗e−ik1x)
)
. (10)

Simplifying,

ji =
h̄k1
m

|A|2. (11)

Thus, we have derived the required expression for the flux of incident particles.
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