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4. Show that in the 3D case, the probability cur-
rent density calculated by the quantum equation
and its classical analog have the same measure-

ment units.

The quantum probability current density is:
. Zh * *
jo= 5 (V" =¥ VY)
The classical probability current density is:

jc:nv

The wave function ¢ has units:

—_

P =

:

The gradient operator V has:

1
V=—
m

The reduced Planck’s constant & has units:

kg - m?
h=J.s= -5

Mass m has units:

L as units:
m

The ¥V1* has units:

eee1- () ()&
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So jo has :

For the classical case:
Number density n has units:

1
Velocity v has units:
m
v=— (11)

And so jo has units:
1 m 1
— ). (=)= —— 12
(m3) ( s ) m? - s (12)
Since both jg and jo have the same units:

1

- (13)

The quantum and classical probability current densities share the
same measurement units.

15. Eigenvalue problem for Hamilton operator
is.... How is looks like the eigenvalue E for eigen-
value problem? How can coefficients be calcu-

lated?

10

The eigenvalue problem for the Hamiltonian operator His given by:

ﬁ% = Enwm (14)

where:
e 1, are the eigenfunctions of the Hamiltonian H ,
e F,, are the corresponding eigenvalues.

Now, consider a general function ¢ that can be expanded in terms of the
eigenfunctions ,,:

¢ = Z Cntn.- (15)
Applying the Hamiltonian H to both sides:

Hp=HY cpthn. (16)
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Using the linearity of H:
Since ¢ is also an eigenfunction with eigenvalue E, we have:
Hp = Eg. (18)

Substituting the expansion:

Comparing both sides, we obtain: S€€ 0N suur kusi nmus

FEec,, = E,c,. (20)

Thus, the eigenvalues E are determined by the eigenvalues F,, weighted by
the coefficients c,,.

To determine the coefficients c¢,,, we use the orthonormality of the eigenfunc-
tions:

[ i dV = . (21)

Multiplying both sides of the expansion by ¢}, and integrating:
Jvnoav =S e, [wunar. (22)
Using orthonormality:
/1/1:‘”(;5 dv = ch(smn = Cpm. (23)
Thus the coefficients are given by:

cn= [ wroav. (24)

This equation allows us to compute the coefficients ¢, when ¢ is
known.
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17. The task for free one-dimensional motion of
a particle is stationary? Why? Write the cor-
responding Schrodinger equation for this task.
Find the solution of it (wavefunction and energy
of a free particle). What gives the periodic bound-
ary conditions (quantum number aka the physical
state number)? Give the mathematical represen-
tation for it. Normalize the wavefunction. Cal-
culate the probability density function. Does it
depend on coordinate 7?7 Give the physical in-
terpretation of the answer and its relation to the
Heisenberg uncertainty principle.

A free particle in one dimension is described by the time-independent Schrédinger
equation:

h? d?ip(z)
- =F . 2
o = By (a) (25)
Rearranging, we obtain:
d*y(x) 2
o+ KU() = 0, (26)
where k = ¥21E
The general solution of this equation is:
Y(z) = At 4 Be~ ik, (27)

where A and B are constants determined by boundary conditions.
For a particle in a box of length L with periodic boundary conditions:

Pz + L) = ¢(x). (28)

Applying this condition to the general solution gives the quantization of

wave vectors: 5
kn:%”, nez (29)

The energy levels corresponding to these wave vectors are:

R2k2 (2mn)?K?
~om omL? (30)

To normalize the wavefunction:

L
/ () 2z = 1. (31)

0

E,

|kus on vastus?
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For a plane wave solution:
Y (x) = —=eFn®, (32)

The probability density function is:
1
2
n = 7 33
Yn@)l? = ¢ (33)

which is independent of z. This implies that the particle has an equal probability
of being found anywhere.
This result relates to the Heisenberg uncertainty principle:

AzAp > g (34)

Since the wavefunction is completely delocalized over L, the uncertainty in
position Az is large. Consequently, the momentum p = hk,, is well-defined,
leading to minimal uncertainty in momentum Ap. This demonstrates the fun-
damental wave-particle duality.

28. Operators are commute:

20

(a) p, and §?
(b) p. and p,?

To determine whether two operators commute we calculate their commuta-
tor:

[A,B] = AB — BA. (35)
(a) p. and g
The momentum operator in the z-direction is:
0
Py = —ih—. 36
p ihea (36)

The position operator g simply multiplies by y, so:
[Pes 9] = P2§ — GPs- (37)
Applying these operators to a test function f(z,y):

%(yf) = —zhy%. (38)
Similarly,
Ca ey Lof, . Of
9o f) = y(—ihz") = —ihy . (39)
Since both terms are equal, the commutator is:
[Pz, 9] = 0. (40)

Thus, p, and § commute.
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(b) P, and ﬁy

The momentum operators in the z- and y-directions are:

. ., 0 . L0
P = —zha—x, Dy = —zha—y. (41)

Computing their commutator:
[ﬁzaﬁy] = ﬁrﬁy - ﬁyﬁz (42)
Applying to a function f(z,y):

. 0 L0 . s o’ f
DaPyf = ( zh%)( zha—yf) =—h 920y (43)
. 0 L0 . 0% f
Since mixed partial derivatives commute:
0% f 0% f
0xdy  Oyox’ (45)
we get:

Thus, p, and p, also commute.

33. Show that for a potential barrier (£ > U)),

the flux for reﬂected particles (reflected from the
hkjl vV 2mE

, where k; = Y57=.
For a free particle approaching a potential barrier, the time-independent wave-
function in Region I (before the barrier) is:

barrier) is jr

Y1 (z) = Ae™® 4 Bem e, (47)
where:
V2mE
ky = ;L” . (48)
The probability current density is given by:
h Ldv dy*
- — . 49
" 2mi (1/’ dz q/} ) (49)
For the reflected wave 1z = Be 17 we compute:
d )
—;/;R = (—iki B)e” ™17, (50)
Yy = Bre™®, (51)
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Multiplying these terms:

d . .
o ;”R = B*e™*(—iky Be”™*") = —iky B*B,
X
dij; ; ;
YR ;”R = Be” "% (iky B*e™") = iky BB*.
X

Thus, the probability current density for the reflected wave is:

h
jr==—— (—ik1B*B — ik1BB").
2mi

Since B*B = |B|?, this simplifies to:

. h .

Finally,
hk, B?

JR = ’
m

which proves the given result.





