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4. Show that in the 3D case, the probability cur-
rent density calculated by the quantum equation
and its classical analog have the same measure-
ment units.

The quantum probability current density is:

jQ =
ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ) (1)

The classical probability current density is:

jC = nv (2)

The wave function ψ has units:

ψ =
1√
m3

(3)

The gradient operator ∇ has:

∇ =
1

m
(4)

The reduced Planck’s constant h̄ has units:

h̄ = J · s = kg ·m2

s
(5)

Mass m has units:
m = kg (6)

h̄
m has units:

h̄

m
=

kg ·m2/s

kg
=

m2

s
(7)

The ψ∇ψ∗ has units:

[ψ∇ψ∗] =

(
1√
m3

)
·
(

1

m7/2

)
=

1

m4
(8)
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So jQ has : (
m2

s

)
·
(

1

m4

)
=

1

m2 · s
(9)

For the classical case:
Number density n has units:

n =
1

m3
(10)

Velocity v has units:

v =
m

s
(11)

And so jC has units: (
1

m3

)
·
(m
s

)
=

1

m2 · s
(12)

Since both jQ and jC have the same units:

1

m2 · s
(13)

The quantum and classical probability current densities share the
same measurement units.

15. Eigenvalue problem for Hamilton operator
is.... How is looks like the eigenvalue E for eigen-
value problem? How can coefficients be calcu-
lated?

The eigenvalue problem for the Hamiltonian operator Ĥ is given by:

Ĥψn = Enψn, (14)

where:

• ψn are the eigenfunctions of the Hamiltonian Ĥ,

• En are the corresponding eigenvalues.

Now, consider a general function ϕ that can be expanded in terms of the
eigenfunctions ψn:

ϕ =
∑
n

cnψn. (15)

Applying the Hamiltonian Ĥ to both sides:

Ĥϕ = Ĥ
∑
n

cnψn. (16)
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Using the linearity of Ĥ:∑
n

cnĤψn =
∑
n

cnEnψn. (17)

Since ϕ is also an eigenfunction with eigenvalue E, we have:

Ĥϕ = Eϕ. (18)

Substituting the expansion:∑
n

cnEnψn = E
∑
n

cnψn. (19)

Comparing both sides, we obtain:

Ecn = Encn. (20)

Thus, the eigenvalues E are determined by the eigenvalues En weighted by
the coefficients cn.

To determine the coefficients cn, we use the orthonormality of the eigenfunc-
tions: ∫

ψ∗
mψn dV = δmn. (21)

Multiplying both sides of the expansion by ψ∗
m and integrating:∫

ψ∗
mϕdV =

∑
n

cn

∫
ψ∗
mψn dV. (22)

Using orthonormality:∫
ψ∗
mϕdV =

∑
n

cnδmn = cm. (23)

Thus the coefficients are given by:

cn =

∫
ψ∗
nϕdV. (24)

This equation allows us to compute the coefficients cn when ϕ is
known.
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17. The task for free one-dimensional motion of
a particle is stationary? Why? Write the cor-
responding Schrödinger equation for this task.
Find the solution of it (wavefunction and energy
of a free particle). What gives the periodic bound-
ary conditions (quantum number aka the physical
state number)? Give the mathematical represen-
tation for it. Normalize the wavefunction. Cal-
culate the probability density function. Does it
depend on coordinate x? Give the physical in-
terpretation of the answer and its relation to the
Heisenberg uncertainty principle.

A free particle in one dimension is described by the time-independent Schrödinger
equation:

− h̄2

2m

d2ψ(x)

dx2
= Eψ(x). (25)

Rearranging, we obtain:

d2ψ(x)

dx2
+ k2ψ(x) = 0, (26)

where k =
√
2mE
h̄ .

The general solution of this equation is:

ψ(x) = Aeikx +Be−ikx, (27)

where A and B are constants determined by boundary conditions.
For a particle in a box of length L with periodic boundary conditions:

ψ(x+ L) = ψ(x). (28)

Applying this condition to the general solution gives the quantization of
wave vectors:

kn =
2πn

L
, n ∈ Z. (29)

The energy levels corresponding to these wave vectors are:

En =
h̄2k2n
2m

=
(2πn)2h̄2

2mL2
. (30)

To normalize the wavefunction:∫ L

0

|ψ(x)|2dx = 1. (31)
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For a plane wave solution:

ψn(x) =
1√
L
eiknx. (32)

The probability density function is:

|ψn(x)|2 =
1

L
, (33)

which is independent of x. This implies that the particle has an equal probability
of being found anywhere.

This result relates to the Heisenberg uncertainty principle:

∆x∆p ≥ h̄

2
. (34)

Since the wavefunction is completely delocalized over L, the uncertainty in
position ∆x is large. Consequently, the momentum p = h̄kn is well-defined,
leading to minimal uncertainty in momentum ∆p. This demonstrates the fun-
damental wave-particle duality.

28. Operators are commute:

(a) p̂x and ŷ?
(b) p̂x and p̂y?

To determine whether two operators commute we calculate their commuta-
tor:

[Â, B̂] = ÂB̂ − B̂Â. (35)

(a) p̂x and ŷ

The momentum operator in the x-direction is:

p̂x = −ih̄ ∂

∂x
. (36)

The position operator ŷ simply multiplies by y, so:

[p̂x, ŷ] = p̂xŷ − ŷp̂x. (37)

Applying these operators to a test function f(x, y):

p̂x(ŷf) = −ih̄ ∂

∂x
(yf) = −ih̄y ∂f

∂x
. (38)

Similarly,

ŷ(p̂xf) = y(−ih̄∂f
∂x

) = −ih̄y ∂f
∂x
. (39)

Since both terms are equal, the commutator is:

[p̂x, ŷ] = 0. (40)

Thus, p̂x and ŷ commute.
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(b) p̂x and p̂y

The momentum operators in the x- and y-directions are:

p̂x = −ih̄ ∂

∂x
, p̂y = −ih̄ ∂

∂y
. (41)

Computing their commutator:

[p̂x, p̂y] = p̂xp̂y − p̂yp̂x. (42)

Applying to a function f(x, y):

p̂xp̂yf = (−ih̄ ∂

∂x
)(−ih̄ ∂

∂y
f) = −h̄2 ∂

2f

∂x∂y
. (43)

p̂yp̂xf = (−ih̄ ∂
∂y

)(−ih̄ ∂

∂x
f) = −h̄2 ∂

2f

∂y∂x
. (44)

Since mixed partial derivatives commute:

∂2f

∂x∂y
=

∂2f

∂y∂x
, (45)

we get:
[p̂x, p̂y] = 0. (46)

Thus, p̂x and p̂y also commute.

33. Show that for a potential barrier (E > U0),
the flux for reflected particles (reflected from the

barrier) is jR = h̄k1B
2

m , where k1 =
√
2mE
h̄ .

For a free particle approaching a potential barrier, the time-independent wave-
function in Region I (before the barrier) is:

ψ1(x) = Aeik1x +Be−ik1x, (47)

where:

k1 =

√
2mE

h̄
. (48)

The probability current density is given by:

j =
h̄

2mi

(
ψ∗ dψ

dx
− ψ

dψ∗

dx

)
. (49)

For the reflected wave ψR = Be−ik1x, we compute:

dψR

dx
= (−ik1B)e−ik1x, (50)

ψ∗
R = B∗eik1x. (51)
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Multiplying these terms:

ψ∗
R

dψR

dx
= B∗eik1x(−ik1Be−ik1x) = −ik1B∗B, (52)

ψR
dψ∗

R

dx
= Be−ik1x(ik1B

∗eik1x) = ik1BB
∗. (53)

Thus, the probability current density for the reflected wave is:

jR =
h̄

2mi
(−ik1B∗B − ik1BB

∗) . (54)

Since B∗B = |B|2, this simplifies to:

jR =
h̄

2mi
· (−2ik1|B|2). (55)

Finally,

jR =
h̄k1B

2

m
, (56)

which proves the given result.
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