
8. Can you show that the average value for some physical quantity
A (measurable value for given quantity) i.e. ⟨A⟩ do not depend on
time for stationary solution of full Schrodinger equation

Suppose we have a wave function that is a stationary state:

ψ(r, t) = ϕ(r) e−iEt/ℏ,

where ϕ(r) is an eigenfunction of the Hamiltonian with eigenvalue E. The
expectation value of an operator Â is given by

⟨A⟩(t) =
∫
ψ∗(r, t) Â ψ(r, t) d3r.

Substitute the expression for ψ(r, t) into the formula:

ψ∗(r, t) = ϕ∗(r) eiEt/ℏ,

so we get

⟨A⟩(t) =
∫ [

ϕ∗(r) eiEt/ℏ] Â [
ϕ(r) e−iEt/ℏ] d3r.

Notice that
eiEt/ℏ · e−iEt/ℏ = 1,

which means the exponential factors cancel out. Therefore, the expression
simplifies to:

⟨A⟩(t) =
∫
ϕ∗(r) Â ϕ(r) d3r.

This result does not depend on time. Since the expectation value ⟨A⟩ does
not have any time dependence, its time derivative is zero:

d

dt
⟨A⟩(t) = 0.

This shows that in a stationary state, the expectation value of any operator
Â (with no explicit time dependence) remains constant over time.

12. Why in quantum mechanics should we use Hermitian operators
to solve the eigenvalue problem? Definition of Hermite operators.
Show that eigenfunctions of Hermitian operators form the set of
orthonormal functions.

In quantum mechanics, measurable quantities (observables) like energy, po-
sition, or momentum are represented by operators. We need the possible
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measurement results (the eigenvalues) to be real numbers. Hermitian opera-
tors have the special property that all their eigenvalues are real. This makes
them the natural choice to represent observables.

An operator Â is called Hermitian (or self-adjoint) if for any two states ϕ
and ψ the following holds:

⟨ϕ|Â ψ⟩ = ⟨Â ϕ|ψ⟩.
This condition is equivalent to saying that

Â = Â†,

where Â† is the Hermitian conjugate (adjoint) of Â.

Let Â be a Hermitian operator and consider two of its eigenfunctions, ϕm

and ϕn, corresponding to the eigenvalues am and an, respectively:

Âϕm = am ϕm and Âϕn = an ϕn.

Take the inner product of ϕn with the first eigenvalue equation:

⟨ϕn|Âϕm⟩ = am⟨ϕn|ϕm⟩.
Using the Hermitian property, we can write:

⟨ϕn|Âϕm⟩ = ⟨Âϕn|ϕm⟩ = an⟨ϕn|ϕm⟩.
Equate the two expressions:

am⟨ϕn|ϕm⟩ = an⟨ϕn|ϕm⟩.
If am ̸= an, then the only solution is

⟨ϕn|ϕm⟩ = 0,

which means ϕn and ϕm are orthogonal.
When am = an, the eigenfunctions belong to a degenerate subspace. In

this case, one can always use a method like the Gram-Schmidt process to
choose a set of orthogonal (and then normalized) eigenfunctions.

Because Hermitian operators have real eigenvalues and their eigenfunc-
tions corresponding to different eigenvalues are orthogonal, we can always
form an orthonormal set by normalizing these eigenfunctions. This is why
we use Hermitian operators in quantum mechanics: they ensure that our
measurements yield real numbers and that the state space is spanned by a
complete, orthonormal set of functions.

2



22. Calculate the probability current density function for periodic
motion of free particle in one-dimensional space. Give a physical
interpretation of the result obtained.

In one-dimensional quantum mechanics, the probability current density is
defined as

J(x, t) =
ℏ

2mi

[
ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x

]
,

where ψ(x, t) is the wave function of the particle. For a free particle in
periodic motion, a typical solution is a plane wave:

ψ(x, t) = Aei(kx−ωt),

with:

ω =
ℏk2

2m
,

where A is a (possibly complex) normalization constant, k is the wave num-
ber, and ω is the angular frequency. First, compute the spatial derivative of
ψ(x, t):

∂ψ(x, t)

∂x
= ikAei(kx−ωt) = ik ψ(x, t).

Similarly, the complex conjugate of the wave function is:

ψ∗(x, t) = A∗e−i(kx−ωt),

and its spatial derivative is:

∂ψ∗(x, t)

∂x
= −ikA∗e−i(kx−ωt) = −ik ψ∗(x, t).

Substitute these into the expression for J(x, t):

J(x, t) =
ℏ

2mi
[ψ∗(x, t)(ik ψ(x, t))− ψ(x, t)(−ik ψ∗(x, t))] .

Simplify the expression:

J(x, t) =
ℏ

2mi
[ik ψ∗(x, t)ψ(x, t) + ik ψ(x, t)ψ∗(x, t)] .
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Since ψ∗(x, t)ψ(x, t) = |ψ(x, t)|2, this becomes:

J(x, t) =
ℏ

2mi

[
2ik |ψ(x, t)|2

]
=

ℏk
m

|ψ(x, t)|2.

The final expression for the probability current density is:

J(x, t) =
ℏk
m

|ψ(x, t)|2.

This tells us:

• The current is directly proportional to the wave number k, which is
related to the momentum p = ℏk. Thus, a larger momentum results in
a larger current.

• The probability density |ψ(x, t)|2 is uniform (constant) for a normalized
plane wave, meaning the probability of finding the particle is evenly
distributed over space.

• A positive k indicates that the net flow of probability is in the pos-
itive x-direction, while a negative k indicates a flow in the negative
x-direction.

For a free particle in periodic (plane wave) motion, the probability current
is constant and reflects the steady flow of probability associated with the
particle’s momentum.

29. Operators are commute : a. p̂x and p̂y b. p̂x and x̂2

a) Commutation of p̂x and p̂y The momentum operators in the x and y
directions are defined as

p̂x = −iℏ ∂
∂x
, p̂y = −iℏ ∂

∂y
.

Since partial derivatives with respect to different variables commute (i.e.,
∂
∂x

∂
∂y

= ∂
∂y

∂
∂x
), we have

[p̂x, p̂y] = p̂xp̂y − p̂yp̂x = 0.

Thus, the operators p̂x and p̂y commute.
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b) Commutation of p̂x and x̂2 We now calculate the commutator be-
tween p̂x and x̂2:

[p̂x, x̂
2] = p̂x x̂

2 − x̂2 p̂x.

Using the property of commutators for a product of operators,

[p̂x, x̂
2] = [p̂x, x̂] x̂+ x̂ [p̂x, x̂].

The canonical commutation relation is

[x̂, p̂x] = iℏ =⇒ [p̂x, x̂] = −iℏ.

Substitute this into our expression:

[p̂x, x̂
2] = (−iℏ) x̂+ x̂ (−iℏ) = −2iℏ x̂.

Since −2iℏ x̂ ̸= 0 (in general), the operators p̂x and x̂2 do not commute.

36. What do the dependencies of transition and reflection coeffi-
cients on particle energy look like in the classical case? Why?

In classical mechanics, when a particle encounters a potential barrier, its
behavior is completely determined by its energy relative to the barrier height
V . Unlike quantum mechanics, classical mechanics does not allow for partial
transmission or tunneling. The transition (transmission) coefficient T and
reflection coefficient R are thus defined by a sharp threshold.

Particle Energy E > V

• The particle has enough energy to overcome the barrier.

• It is always transmitted, so the transition coefficient is

L = 1,

and the reflection coefficient is

R = 0.
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Particle Energy E < V

• The particle does not have sufficient energy to cross the barrier.

• It is completely reflected, so the transition coefficient is

L = 0,

and the reflection coefficient is

R = 1.

Reasons:

• In classical mechanics, energy is conserved, and a particle cannot over-
come a barrier if its kinetic energy is insufficient.

• The outcome is deterministic. There is no probability of partial trans-
mission or reflection as there is in quantum mechanics.

• Classical particles do not tunnel through potential barriers. The transi-
tion and reflection coefficients are therefore step functions of the energy:

L(E) =

{
0 if E < V,

1 if E > V,
and R(E) =

{
1 if E < V,

0 if E > V.

In the classical case, the transmission and reflection coefficients change
abruptly at E = V . For E > V , the particle is fully transmitted, and for
E < V , it is completely reflected. This step-like behavior arises because
classical mechanics only allows a particle to either fully overcome or not
overcome the barrier, with no intermediate or probabilistic outcome.
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