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1 Kiusimus 9:

20 Y = cihy + cath2 (1)
(Y| H )
E) = 2
= ") ®
Using the linearity of the Hamiltonian operator:
Hyp = H(c1thy + catha) = er Hipy + o Hpy 3)

Since 1, and 1y are eigenfunctions of H with eigenvalues E; and F,, we
substitute:

Hiy = Evipr,  Hipo = Exipy (4)
Hy = c1 Evihy + caEathy (5)

Calculate (¢|H|1)
(WIH|p) = ((c11 + catha)|(c1 Brtpy + caEahy)) (6)

Expanding:
= cja By (P1]¥1) + cleaBa(Yr|a) + cze1 Er(a|hr) + cieaBa(taltha)  (7)

Since 17 and 1 are orthonormal:

(1l1) =1, (Yolta) =1, (¥1ltpa) =0 (8)

(WH[y) = cie1 By + chea B (9)
Calculate (1|¢)
(YlY) = (crhr + cavacrthr + catp2) (10)
= cier(1|n) + ciea(¥a|ve) + cier(Yalihn) + ciea(a|ha) (11)
Since 17 and 1y are orthonormal:
(Yly) = cier + ez (12)
Calculate the Expectation Value of Energy

ciaEr + ciea By

E =
(E) cicr +c5eo

(13)

Condition on coefficients c¢; and ¢, For 9 to be a valid quantum state,
it must be normalized:

(l) =1 (14)

Thus, the coefficients must satisfy:

je1]* +Jeal* =1 (15)
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2 Kiusimus 13: 5 kus on

. . .|vahevalemid ?
The kinetic energy operator is giverroy-

_ 2
7 g

2m

where V2 is the Laplacian operator.
An operator A is Hermitian if it satisfies the condition:

(9| Ay) = (Ag|y)

for all well-behaved functions ¢ and .

To check whether T' is Hermitian, we evaluate the inner product:

I= / ¢*(r)Top(x) d3r.

Substituting 7°:

I= /¢*(r) (;ﬁjv%(r)) d*r.

(16)

(17)

(18)

(19)

Using integration by parts and assuming that ¢ and 1 vanish at infinity, the

boundary terms disappear, leaving:
1= [ (vt ) v
= o T
Rewriting:

I— / (T¢(r)>*¢(r)d3r.

This shows that: R R
(D|T) = (T'oly),

which confirms that 7 is Hermitian.

3 Kisimus 16: 20

The momentum operator in the x-direction is given by:

R,
Py = zh%.

The eigenvalue equation for the momentum operator is:
Dz¥n = Pnn,

where p,, is the eigenvalue corresponding to the eigenfunction ,,.
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The expectation value of momentum for a state 1 is given by:
o= [ i do (25)
Substituting p, v, = Pntn:

<p>n :/Wmnlﬁn dv. (26)

Since p,, is a constant, it can be factored out:

o= v [ Vi o (21)
For a normalized wavefunction, [ |t,|*dv = 1, so we obtain:

<p>n = DPn- (28)

Thus, if 1, is a pure eigenstate of p,, then the expectation value (p), is
equal to p,.
However, if the wavefunction is a superposition of multiple eigenstates:

iﬁ = Z an/]ru (29)

then the expectation value of momentum is given by:

() = leal’pn, (30)

n

which is a weighted sum of eigenvalues, not necessarily equal to any single
eigenvalue.

The expectation value (p),, = p,, holds only if the system is in a pure eigen-
state of the momentum operator. If the state is a superposition of eigenstates,
the expectation value is generally different from any individual eigenvalue.

4 Kiusimus 26:

The Heisenberg uncertainty principle states that the product of the uncertainties
in position (Az) and momentum (Ap) is bounded by:

Ar-Ap> g (31)

Derivation

We derive this using the Schwarz inequality and the properties of quantum
operators.
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Step 1:

The position & and momentum p operators satisfy the canonical commutation
relation:

[2,p] = ih (32)
where p = —ih% in the position representation.

Step 2:

For an observable fl, its expectation value in a state |¢) is given by:

(4) = (¥|Aly) (33)
The uncertainty in A is:
AA =/ (42) - (A)? (34)
For position and momentum:
Az = /(2?) = (2)%, Ap =/ (p?) — ()? (35)
Deviation operators:
A=i— (&), B=p—(p) (36)

Step 3:

The Schwarz inequality states:

U o o 2
(WIAT AN | BT Bl) 2 |(wlABIy)] (37)
Expanding in terms of variances:
2
2 2 Lo .
(@029 = |3 6.7 (39)
Using the commutator relation [, p] = ih, we get:
2 2
1. h
We obtain the final result:
h
Ax - Ap > 5 (40)



5 Kiusimus 32: 20

For a step potential where E > Upy, the flux of incident particles (probability
current density) is given by:

. hkqy A2
s = 41
J - (41)
where
2mE
ky = ;L” (42)

Step 1: Define the Wavefunction

In the region before the barrier (Region I), the wavefunction can be written as:
Y1 (z) = Ae'Fr® 4 Bemihae (43)

Step 2: Probability Current Density Definition
The probability current density j(x) is defined as:

. h LAY dyT
S Y 44
J 2mi<wda: djdm) (44)
For the incident wave ¢;(z) = Ae?1®, we compute its derivative:
dli = ik Aet (45)
dyy} . * _—ikix
j}x’ = —ik A%e” ™ (46)
Step 3: Compute Incident Flux j;
Substituting into the probability current density equation:
i = e (A*e_ik”: ik Aett1T — Aetkr (—iklA*e_iklx)) (47)
2mi
ho . *
=5 (tk1 A" A — (—ik1 AAY)) (48)
ho .
= % (’Lk1|A|2 + ’Lk1|A|2) (49)
I
= Liyjap (50)
We obtain:
ji= 1 g2 (51)
m
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