
1 Küsimus 9:

ψ = c1ψ1 + c2ψ2 (1)

⟨E⟩ = ⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(2)

Using the linearity of the Hamiltonian operator:

Ĥψ = Ĥ(c1ψ1 + c2ψ2) = c1Ĥψ1 + c2Ĥψ2 (3)

Since ψ1 and ψ2 are eigenfunctions of Ĥ with eigenvalues E1 and E2, we
substitute:

Ĥψ1 = E1ψ1, Ĥψ2 = E2ψ2 (4)

Ĥψ = c1E1ψ1 + c2E2ψ2 (5)

Calculate ⟨ψ|Ĥ|ψ⟩

⟨ψ|Ĥ|ψ⟩ = ⟨(c1ψ1 + c2ψ2)|(c1E1ψ1 + c2E2ψ2)⟩ (6)

Expanding:

= c∗1c1E1⟨ψ1|ψ1⟩+ c∗1c2E2⟨ψ1|ψ2⟩+ c∗2c1E1⟨ψ2|ψ1⟩+ c∗2c2E2⟨ψ2|ψ2⟩ (7)

Since ψ1 and ψ2 are orthonormal:

⟨ψ1|ψ1⟩ = 1, ⟨ψ2|ψ2⟩ = 1, ⟨ψ1|ψ2⟩ = 0 (8)

⟨ψ|Ĥ|ψ⟩ = c∗1c1E1 + c∗2c2E2 (9)

Calculate ⟨ψ|ψ⟩

⟨ψ|ψ⟩ = ⟨c1ψ1 + c2ψ2|c1ψ1 + c2ψ2⟩ (10)

= c∗1c1⟨ψ1|ψ1⟩+ c∗1c2⟨ψ1|ψ2⟩+ c∗2c1⟨ψ2|ψ1⟩+ c∗2c2⟨ψ2|ψ2⟩ (11)

Since ψ1 and ψ2 are orthonormal:

⟨ψ|ψ⟩ = c∗1c1 + c∗2c2 (12)

Calculate the Expectation Value of Energy

⟨E⟩ = c∗1c1E1 + c∗2c2E2

c∗1c1 + c∗2c2
(13)

Condition on coefficients c1 and c2 For ψ to be a valid quantum state,
it must be normalized:

⟨ψ|ψ⟩ = 1 (14)

Thus, the coefficients must satisfy:

|c1|2 + |c2|2 = 1 (15)
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2 Küsimus 13:

The kinetic energy operator is given by:

T̂ =
−h̄2

2m
∇2 (16)

where ∇2 is the Laplacian operator.
An operator Â is Hermitian if it satisfies the condition:

⟨ϕ|Âψ⟩ = ⟨Âϕ|ψ⟩ (17)

for all well-behaved functions ϕ and ψ.
To check whether T̂ is Hermitian, we evaluate the inner product:

I =

∫
ϕ∗(r)T̂ψ(r) d3r. (18)

Substituting T̂ :

I =

∫
ϕ∗(r)

(
−h̄2

2m
∇2ψ(r)

)
d3r. (19)

Using integration by parts and assuming that ϕ and ψ vanish at infinity, the
boundary terms disappear, leaving:

I =

∫ (
−h̄2

2m
∇2ϕ∗(r)

)
ψ(r)d3r. (20)

Rewriting:

I =

∫ (
T̂ ϕ(r)

)∗
ψ(r)d3r. (21)

This shows that:
⟨ϕ|T̂ψ⟩ = ⟨T̂ ϕ|ψ⟩, (22)

which confirms that T̂ is Hermitian.

3 Küsimus 16:

The momentum operator in the x-direction is given by:

p̂x = −ih̄ ∂

∂x
. (23)

The eigenvalue equation for the momentum operator is:

p̂xψn = pnψn, (24)

where pn is the eigenvalue corresponding to the eigenfunction ψn.
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The expectation value of momentum for a state ψ is given by:

⟨p⟩n =

∫
ψ∗
np̂xψn dv. (25)

Substituting p̂xψn = pnψn:

⟨p⟩n =

∫
ψ∗
npnψn dv. (26)

Since pn is a constant, it can be factored out:

⟨p⟩n = pn

∫
ψ∗
nψn dv. (27)

For a normalized wavefunction,
∫
|ψn|2 dv = 1, so we obtain:

⟨p⟩n = pn. (28)

Thus, if ψn is a pure eigenstate of p̂x, then the expectation value ⟨p⟩n is
equal to pn.

However, if the wavefunction is a superposition of multiple eigenstates:

ψ =
∑
n

cnψn, (29)

then the expectation value of momentum is given by:

⟨p⟩ =
∑
n

|cn|2pn, (30)

which is a weighted sum of eigenvalues, not necessarily equal to any single
eigenvalue.

The expectation value ⟨p⟩n = pn holds only if the system is in a pure eigen-
state of the momentum operator. If the state is a superposition of eigenstates,
the expectation value is generally different from any individual eigenvalue.

4 Küsimus 26:

The Heisenberg uncertainty principle states that the product of the uncertainties
in position (∆x) and momentum (∆p) is bounded by:

∆x ·∆p ≥ h̄

2
(31)

Derivation

We derive this using the Schwarz inequality and the properties of quantum
operators.
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Step 1:

The position x̂ and momentum p̂ operators satisfy the canonical commutation
relation:

[x̂, p̂] = ih̄ (32)

where p̂ = −ih̄ d
dx in the position representation.

Step 2:

For an observable Â, its expectation value in a state |ψ⟩ is given by:

⟨Â⟩ = ⟨ψ|Â|ψ⟩ (33)

The uncertainty in Â is:

∆A =

√
⟨Â2⟩ − ⟨Â⟩2 (34)

For position and momentum:

∆x =
√
⟨x̂2⟩ − ⟨x̂⟩2, ∆p =

√
⟨p̂2⟩ − ⟨p̂⟩2 (35)

Deviation operators:

Â = x̂− ⟨x̂⟩, B̂ = p̂− ⟨p̂⟩ (36)

Step 3:

The Schwarz inequality states:

⟨ψ|Â†Â|ψ⟩⟨ψ|B̂†B̂|ψ⟩ ≥
∣∣∣⟨ψ|ÂB̂|ψ⟩

∣∣∣2 (37)

Expanding in terms of variances:

(∆x)2(∆p)2 ≥
∣∣∣∣12 ⟨[x̂, p̂]⟩

∣∣∣∣2 (38)

Using the commutator relation [x̂, p̂] = ih̄, we get:∣∣∣∣12 ih̄
∣∣∣∣2 =

h̄2

4
(39)

We obtain the final result:

∆x ·∆p ≥ h̄

2
(40)
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5 Küsimus 32:

For a step potential where E > U0, the flux of incident particles (probability
current density) is given by:

ji =
h̄k1A

2

m
(41)

where

k1 =

√
2mE

h̄
(42)

Step 1: Define the Wavefunction

In the region before the barrier (Region I), the wavefunction can be written as:

ψ1(x) = Aeik1x +Be−ik1x (43)

Step 2: Probability Current Density Definition

The probability current density j(x) is defined as:

j =
h̄

2mi

(
ψ∗ dψ

dx
− ψ

dψ∗

dx

)
(44)

For the incident wave ψi(x) = Aeik1x, we compute its derivative:

dψi

dx
= ik1Ae

ik1x (45)

dψ∗
i

dx
= −ik1A∗e−ik1x (46)

Step 3: Compute Incident Flux ji

Substituting into the probability current density equation:

ji =
h̄

2mi

(
A∗e−ik1x · ik1Aeik1x −Aeik1x · (−ik1A∗e−ik1x)

)
(47)

=
h̄

2mi
(ik1A

∗A− (−ik1AA∗)) (48)

=
h̄

2mi

(
ik1|A|2 + ik1|A|2

)
(49)

=
h̄

m
k1|A|2 (50)

We obtain:

ji =
h̄k1
m

A2 (51)
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