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1 Question 5

Probability current density j expressed by formula (1), is a mathematical quan-
tity that describes the flow of probability associated with the wave function of
a particle.

j =
ih̄

2M

(
Ψ
dΨ∗

dx
−Ψ∗ dΨ

dx

)
(1)

The probability current is similar to flowing liquids in classical mechanics or
electric currents in electromagnetism. For example, if electrons move through a
conductor, their probability current density describes the flow of charge. Simi-
larly, with two gaseous regions of different density, one high and one low, when
particles diffuse from the higher density section to the lower one, the probability
current describes how the likelihood of finding a particle changes over time.

If the wave function Psi happens to be real, then the probability current
density is 0, since the complex conjugate of a real number is that very same real
number.

Ψ = Ψ∗ (2)

And since this is the case, expression (1) transforms to

j =
ih̄

2M

(
Ψ
dΨ∗

dx
−Ψ∗ dΨ

dx

)
=

ih̄

2M

(
Ψ
dΨ

dx
−Ψ

dΨ

dx

)
=

ih̄

2M
(0) = 0 (3)

2 Question 11

Hermitian operators are used to solve the eigenvalue problem because they en-
sure that measurable physical quantities have real eigenvalues. This is essential
because any physical measurements like energy or momentum must yield real
values.

A Hermitian operator Â in a Hilbert space satisfies the condition:

Â† = Â (4)

where Â† represents the Hermitian adjoint of Â. This means that for any
two states |ψ⟩ and |ϕ⟩ in the Hilbert space, the following holds:
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⟨ψ|Âϕ⟩ = ⟨Âψ|ϕ⟩ (5)

Proving that eigenvalues of hermitian operators are real numbers: Let Â be
a Hermitian operator with eigenvalues an and eigenfunctions φn:

Âφn = anφn. (6)

Taking the inner product with ⟨φn| gives:

⟨φn|Âφn⟩ = an⟨φn|φn⟩. (7)

Since Â is Hermitian, we also have:

⟨Âφn|φn⟩ = a∗n⟨φn|φn⟩. (8)

Equating these expressions,

(an − a∗n)⟨φn|φn⟩ = 0. (9)

Since ⟨φn|φn⟩ ≠ 0, it follows that a∗n = an, proving eigenvalues of Hermitian
operators are real.

3 Question 18

For a free particle in one dimension, the time-independent Schrödinger equation
is:

− h̄2

2m

d2

dx2
ψ(x) = Eψ(x) (10)

This is a simple second-order differential equation with solutions that are of
the form:

ψk(x) =
1√
L
eikx (11)

The wave function ψk(x) is a plane wave that satisfies the periodic boundary
conditions, meaning that:

ψk(x+ L) = ψk(x) (12)

This implies that the allowed wave numbers are quantized:

k =
2πn

L
(13)

where n is any integer greater than zero.
From this, we can say that the wave functions of a free particle are:
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ψn(x) =
1√
L
ei

2πn
L x (14)

Now, to show orthogonality, we compute the inner product of two wave
functions. ψn(x) and ψm(x), and check they equal zero when n ̸= m. We shall
define the inner product as:

⟨ψn|ψm⟩ =
∫ L

0

ψ∗
n(x)ψm(x) dx (15)

When substituting ψn(x) and ψm(x), we get:

⟨ψn|ψm⟩ =
∫ L

0

1√
L
e−i 2πn

L x · 1√
L
ei

2πm
L x dx (16)

⟨ψn|ψm⟩ = 1

L

∫ L

0

ei
2π(m−n)

L x dx (17)∫ L

0

ei
2π(m−n)

L x dx =
L

i2π(m− n)

[
ei

2π(m−n)
L x

]L
0

(18)

Since the exponential term ei
2π(m−n)

L L = ei2π(m−n) = 1, we get:

⟨ψn|ψm⟩ = 1

L
(L · δmn) = δmn (19)

Where δmn is the Kronecker delta, which is 1 if m = n and 0 if m ̸= n.
Therefore, the wave functions must be orthogonal.
Now let us move on with wave functions, energy and momentum for case

n=3.
Using equation (14), we can show that in case number 3, equation (14)

transforms to:

ψ3(x) =
1√
L
ei

2π·3
L x =

1√
L
ei

6π
L x (20)

Energy in a state is defined as:

En =
h̄2k2

2m
(21)

Substituting k from equation (13) into the energy expression:

E3 =
h̄2

2m

(
6π

L

)2

=
h̄2

2m
· 36π

2

L2
(22)

The momentum associated with the state is related to the wave number by:

pn = h̄k (23)

Again, substituting equation (13) into this expression at case n=3, we get:

p3 = h̄ · 6π
L

(24)
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4 Question 27

[Â, B̂] = ÂB̂ − B̂Â = 0

1)

p̂x = −ih̄ ∂

∂x
, p̂y = −ih̄ ∂

∂y

[p̂x, p̂y] = p̂xp̂y − p̂yp̂x

=

(
−ih̄ ∂

∂x

)(
−ih̄ ∂

∂y

)
−

(
−ih̄ ∂

∂y

)(
−ih̄ ∂

∂x

)
= 0

Thus, p̂x and p̂y are commutative.

2)

[p̂2x, p̂y] = p̂2xp̂y − p̂yp̂
2
x

=

(
(−ih̄)2 ∂

2

∂x2

)(
−ih̄ ∂

∂y

)
−
(
−ih̄ ∂

∂y

)(
(−ih̄)2 ∂

2

∂x2

)

= −ih̄3
(

∂3

∂x2∂y
− ∂3

∂y∂x2

)
∂2

∂x2

(
∂

∂y
ψ(x, y)

)
− ∂

∂y

(
∂2

∂x2
ψ(x, y)

)
=

[
∂2

∂x2
,
∂

∂y

]
= 0

Thus, p̂2x and p̂y are commutative.

5 Question 32

For the case of a stepped potential barrier, we are to show that for E > U0, the
flux of particles moving towards the barrier (incident particles) is given by:

ji =
h̄k1A

2

m
, (25)

where k1 =
√
2mE
h̄ .

For a particle in one dimension, the time-independent Schrödinger equation
is given by:

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x), (26)
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where ψ(x) is the wave function, E is the energy, and V (x) is the potential.
The probability density current j is given by expression (1).

Assuming a potential step at x = 0, we consider the following:
- For x < 0, V (x) = 0 (free particle region).
- For x > 0, V (x) = U0 (potential step).
The general form of the wave function is:
- For x < 0 (region where V (x) = 0):

ψ(x) = Aeik1x +Be−ik1x, (27)

where k1 =
√
2mE
h̄ is the wave number corresponding to the energy E of the

particle. Here, A and B are constants.
- For x > 0 (region where V (x) = U0):

ψ(x) = Ceik2x, (28)

where k2 =

√
2m(E−U0)

h̄ is the wave number in the region beyond the poten-
tial step.

For the incident wave ψ(x) = Aeik1x, we compute the derivatives:

dψ(x)

dx
= ik1Ae

ik1x, (29)

dψ∗(x)

dx
= −ik1A∗e−ik1x. (30)

Substituting these into the expression for the probability current density:

ji =
h̄

2mi

(
A∗e−ik1x · (ik1Aeik1x)−Aeik1x · (−ik1A∗e−ik1x)

)
. (31)

Simplifying:

ji =
h̄k1
m

|A|2. (32)

Using k1 =
√
2mE
h̄ , we have:

ji =
h̄
√
2mE

mh̄
A2 =

√
2mE

m
A2. (33)

Therefore, the flux of particles moving towards the potential barrier for
E > U0 is:

ji =
h̄k1A

2

m
, (34)

where k1 =
√
2mE
h̄ .
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