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4.Show that in 3d-case the probability current density calculated by quantum
equation

jQ =
iℏ
2m

{
ψ∗∇̂ψ − ψ∇̂ψ∗

}
and it classical analog jC = n · v have the same measurement units.

In 3d-case we get wave functions dimensions from probability density dP =
|ψ|2dV , where dP is dimensionless, dV is m3, so ψ is m−3/2.

Planck’s constant ℏ dimensions is kg ·m2 · s−1 and m dimension is kg.
Taking gradient of ψ give us dimension of m−5/2.

Putting all the dimensions together we get (kg·m2·s−1)
kg · (m−3/2) · (m−5/2),

which gives us end result of 1
m2·s for probability current density.

In classical mechanics jC = n · v, where n is number of particles per unit
volume giving it a dimension of m−3 and v is velositi with dimensions m · s−1.
Putting these dimensions together we get 1

m·s , which is same as quantum ones
meaning they have same units of measurment.
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15. Eigenvalue problem for Hamilton operators is Ĥψn = Enψn (here ψn is a
set of orthonormal eigenfunctions for Hamiltonian operator Ĥ). How is looks
like the the eigenvalue E for eigenvalue problem Ĥϕ = Eϕ, here ϕ =

∑
n cnψn.

How coefficients cn can be calculated?

Subsitude phi in eigenvalue problem to get Ĥ(
∑
n cnψn) = E(

∑
n cnψn).

Using the linearity ofH and the fact thatHψn = Enψn, we get:
∑
n cnEnψn =

E
∑
n cnψn.

With ψn being orthonormal and lineary independant, we equate the coeffi-
cients of each ψn, we get cnEn = Ecn which implies cn(En − E) = 0

From this we get that eigenvalue E must be one of the eigenvalues En of
the Hamiltonian, and the wavefunction ϕ must be a linear combination of the
eigenfunctions ψn that correspond to that particular eigenvalue E.

The coefficients cn in the expansion ϕ =
∑
n cnψn can be calculated using

the orthonormality of the eigenfunctions ψn. Since ⟨ψm | ψn⟩ = δmn, we have:

cn = ⟨ψn | ϕ⟩ =
∫
ψ∗
nϕdV,
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24. Calculate the average (⟨x⟩n, ⟨p⟩n) and exact (xn, pn) x-coordinate and px
momentum for a free particle in 1d (here n ∈ Z is a quantum number of state).
Were there any problems with the calculations of that four quantities? What
kinds of problems? Why?

Ĥψ = Eψ, in 1d Hamiltonian is Ĥ = − ℏ2

2m
∂2

∂2x , giving us − ℏ2

2m
∂2ψ
∂x2 = Eψ.

Let’s take k2 = 2mE
ℏ2 , we get ∂2ψ

∂x2 = −k2ψ
From this differencial equasion we get ψ(x) = C1e

ikx + C2e
−ikx, if we take

C2 = 0, we simplify it to ψ(x) = Ceikx.
Useing periodic boundary with lenght L we get ψ(x) = ψ(x + L), meaning

Ceikx = Ceik(x+L), from which we get eikL = 1, giving us kn = 2π
L n, n ∈ Z

Using wave function property of it being normalized to 1, we get C2
∫ L
0
eiknxe−iknxdx =

1, from where we get C = 1√
L
, givig us ψn(x) =

1√
L
eikx

Looking for probapility of finding particle between x and dx, dP (x, x +
dx) = ψψ∗dx = 1

L , meaning particle is unformly likely to exist anywhere in set
boundary.

The momentum operator is p̂ = −iℏ ∂
∂x . The expectation value of momentum

in the state ψn(x) is:

⟨p⟩n =

∫
ψ∗
n(x)p̂ψn(x) dx = ℏkn

∫
|ψn(x)|2 dx = ℏkn

Meaning in this case we get avarage coordinat of x and exact momentum pn.

We can’t calculate exact x-coordinate, average location for particle in bound-
ary is just L/2 (the center), which is not physically meaningful since the particle
is equally likely to be found anywhere.

The position and momentum operators have fundamentally different behav-
iors in quantum mechanics.
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27. Operators are commute :
a.) p̂x and p̂y?

b.) p̂2x and p̂y?

Operators are commute if [A,B] = AB −BA = 0.

a) p̂x = −iℏ ∂
∂x , p̂y = −iℏ ∂

∂y .

[p̂x, p̂y]ψ = p̂xp̂yψ − p̂yp̂xψ = (−iℏ ∂

∂x
)(−iℏ ∂

∂y
)ψ − (−iℏ ∂

∂y
)(−iℏ ∂

∂x
)ψ

= (−ℏ2)
∂2ψ

∂x∂y
− (−ℏ2)

∂2ψ

∂y∂x
= −ℏ2

(
∂2ψ

∂x∂y
− ∂2ψ

∂y∂x

)
= 0

Meaning p̂x and p̂y are commute.

b)p̂2x =
(
−iℏ ∂

∂x

)2
= −ℏ2 ∂2

∂x2 , p̂y = −iℏ ∂
∂y

[p̂x, p̂y]ψ = p̂xp̂yψ − p̂yp̂xψ

=

(
−ℏ2

∂2

∂x2

)(
−iℏ ∂

∂y

)
ψ −

(
−iℏ ∂

∂y

)(
−ℏ2

∂2

∂x2

)
ψ

= iℏ3
∂3ψ

∂x2∂y
− iℏ3

∂3ψ

∂y∂x2
= 0

Meaning p̂2x and p̂y are commute.
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33. Show that for potential barrier (E > U0) the flux for reflected particles

(reflected from barrier) is jR = ℏk1B2

m , here k1 =
√
2mE
ℏ .

Let’s look at 1d-case where barrier is at x = 0

U =

{
u0, x < 0

0, 0 < x <∞
E > u0

Because system is isolated, meaning total energy stays constant, we get 2 equal
energy states for left of barrier and right of barrier

E =
1

2
mv21 , E =

1

2
mv22 + u0 ⇒ v1 > v2

Probapility of particle reflecting R = [0, 1] and probapility of going throught
the barrier T = [0, 1], R+ T = 1

Using continuity contion for wave function

φ(x) =

{
φ1(x), x < 0

φ2(x), 0 < x <∞

{
φ1(0) = φ2(0)

φ′
1(0) = φ′

2(0)

We have Hamiltonian and flux equasions

Ĥ = − ℏ2

2m

∂2

∂x2
, j =

iℏ
2m

(
φ∇̂φ∗ − φ∗∇̂φ

)
From Ĥφn = Enφn we get

Ĥφ1 = − ℏ2

2m

∂2φ1

∂x2
= Eφ1, ⇒ ∂2φ1

∂x2
= −2mE

ℏ2
φ1

k1 =

√
2mE

ℏ
,

∂2φ1

∂x2
= −k21φ1

From this differencial equasion we get

φ(x) = Aeik1x +Be−ik1x

We are only interested of reflected particles φ(x) = Be−ik1x, which we will use
in flux equesion to get flux for reflected particles

jR =
iℏ
2m

B2
(
e−ik1xik1e

ik1x − eik1x(−i)k1e−ik1x
)

= −ℏk1B2

m
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