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4.Show that in 3d-case the probability current density calculated by quantum
equation

0= o Ly — V)

jo=5 ¥
and it classical analog jo = n - v have the same measurement units.

In 3d-case we get wave functions dimensions from probability density dP =
|4|2dV, where dP is dimensionless, dV is m?, so 1 is m~3/2,

Planck’s constant A dimensions is kg - m? - s~! and m dimension is kg.

Taking gradient of v give us dimension of m=5/2.

Putting all the dimensions together we get % S (m3/2) . (m™/?),

which gives us end result of ﬁ for probability current density.

In classical mechanics jo = n - v, where n is number of particles per unit
volume giving it a dimension of m~2 and v is velositi with dimensions m - s~!.
Putting these dimensions together we get ﬁ7 which is same as quantum ones

meaning they have same units of measurment.
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15. Eigenvalue problem for Hamilton operators is H Yn = Ent)y, (here 1, is a
set of orthonormal eigenfunctions for Hamiltonian operator H ). How is looks
like the the eigenvalue E for eigenvalue problem H ¢ =E¢, here p =3 cpihy.
How coefficients ¢,, can be calculated?

Subsitude phi in eigenvalue problem to get H (Y cntbn) = E(Y, cathn).

Using the linearity of H and the fact that Hi, = Ep,, we get: > cpEpth, =
EY, cntn.

With v, being orthonormal and lineary independant, we equate the coeffi-
cients of each v,,, we get ¢, E,, = Ec¢, which implies ¢, (E, — E) =0

From this we get that eigenvalue E must be one of the eigenvalues E,, of
the Hamiltonian, and the wavefunction ¢ must be a linear combination of the
eigenfunctions 1, that correspond to that particular eigenvalue E.

The coefficients ¢, in the expansion ¢ = Y ¢, can be calcujated using
the orthonormality of the eigenfunctions t,,. Since (¥, | ¥n) = dmy), we have:

%zwm@=/%ww

Tegelikult E= SUM(n) Cn"2*En v



mihha
Highlight Area

mihha
Text Box
Tegelikult E= SUM(n) Cn^2*En

mihha
Arrow

mihha
Text Box
15


3 20

24. Calculate the average ((z)n,(p)n) and exact (z,,pn) x-coordinate and p,
momentum for a free particle in 1d (here n € Z is a quantum number of state).
Were there any problems with the calculations of that four quantities? What
kinds of problems? Why?

Hz/J FE, in 1d Hamiltonian is H= 2; 575 giving us _%W = F1.

Let’s take k2 = QZZE, we get gmf = k%

From this differencial equasion we get ¢ (x) = Cre*® 1 Che™ ™ if we take
Cy = 0, we simplify it to ¢(x) = Ce®.

Useing periodic boundary with lenght L we get ¥(z) = 7/1($ + L), meaning

Cetks = Cet®(=+L) from which we get e’*L = 1, giving us ky, ZFn,n €L
Using wave function property of it being normalized to 1, we get C’2 fo ethn®e=ikn g —
1, from where we get C' = %, givig us ¢, (x) = ﬁe””

Looking for probapility of finding particle between x and dx, dP(x,z +
dx) = Ypyp*de = %, meaning particle is unformly likely to exist anywhere in set
boundary.

The momentum operator is p = —ih%. The expectation value of momentum
in the state ¢, (x) is:

DY = / 5 ()Pt () dx = B / o ()2 di = Bk

Meaning in this case we get avarage coordinat of x and exact momentum p,,.

We can’t calculate exact x-coordinate, average location for particle in bound-
ary is just L/2 (the center), which is not physically meaningful since the particle
is equally likely to be found anywhere.

The position and momentum operators have fundamentally different behav-
iors in quantum mechanics.
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27. Operators are commute :
a.) Py and p,?
b.) p2, and p,?

Operators are commute if [4, B] = AB — BA = 0.

a) P = —ihgs, Py = —ihg:.
L L L 0 ., 0 0 L 0
[Pas Byt = Pabyth — Dybat) = (_Zh%)(_lh@)w - (—zha—y)(—m%)w
PP Py % 9%

— (_52 _j2 - _j? — =
=(=h )away ( )8y8x <8x6y ayax)

Meaning p, and p, are commute.
)2 = (~ihl)’ = 1 L.y = il
(6", p¥1¢ = p*p¥ — pYp"
0? 0 0 02
— [ _p2 = _ih Y _p2 2
- () () o= () (3 )
93

—ih =0

Meaning p2 and Dy are commute.
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33. Show that for potential barrier (E > Up) the flux for reflected particles

. . . 2
(reflected from barrier) is jr = 22.5- here ky = Y2Z1E

Let’s look at 1d-case where barrier is at x = 0

0
U= o, < E > uyg
0, O0<zx<x

Because system is isolated, meaning total energy stays constant, we get 2 equal
energy states for left of barrier and right of barrier
Lo 5 L
FE = §mv1, E = §mvz +uy = v > v
Probapility of particle reflecting R = [0, 1] and probapility of going throught
the barrier T=[0,1], R+T =1
Using continuity contion for wave function

o(z) = {(pl(a:)7 <0 {@1(0):@

wa(z), 0<z<oo

N> N
—
o O
= =

We have Hamiltonian and flux equasions

. R 92 iR, e
H=—goom 0= g (#V¢ ¢ Vo)

From ﬁgpn = Eb,p, we get

. h? 9%, 0%, 2mE
H = —_—— e E = —
#1 2m Oz2 o= Ox? Rz 1
2mE 82(,01
kl = A ) 6I2 = —k%s@l

From this differencial equasion we get
90(33) — Aeiklz + Be—iklm

We are only interested of reflected particles ¢(z) = Be~*17 which we will use
in flux equesion to get flux for reflected particles

jR _ 227B2 (efzklwiklezklw o ezklz(_i)klefzkla:)
m
_hle2
B m
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