
1 14.

1.1 Linear Equations for First-Order Corrections

In degenerate perturbation theory, we start with an unperturbed Hamiltonian Ĥ0 that
has degenerate energy levels. Let’s consider the n-th energy level E

(0)
n with degeneracy

gn, having orthonormal basis states {
∣∣∣ψ(0),i

n

〉
}gni=1.

The perturbed Hamiltonian is:

Ĥ = Ĥ0 + λV̂ (1)

where V̂ is the perturbation and λ is a small parameter.
The zeroth-order wave function correction is expressed as:∣∣ψ(0)

n

〉
=

gn∑
i=1

c
(0)
i

∣∣ψ(0),i
n

〉
(2)

To find the first-order energy corrections E
(1)
n and the coefficients c

(0)
i , we solve the

eigenvalue problem within the degenerate subspace:

gn∑
j=1

〈
ψ(0),i
n

∣∣ V̂ ∣∣ψ(0),j
n

〉
c
(0)
j = E(1)

n c
(0)
i (3)

This gives us the system of linear equations:

gn∑
j=1

Vijc
(0)
j = E(1)

n c
(0)
i , i = 1, 2, . . . , gn (4)

where Vij =
〈
ψ

(0),i
n

∣∣∣ V̂ ∣∣∣ψ(0),j
n

〉
are the matrix elements of the perturbation.

1.2 Secular Equation

The secular equation is obtained by requiring non-trivial solutions to the homogeneous
system:

gn∑
j=1

(Vij − E(1)
n δij)c

(0)
j = 0 (5)

This leads to the secular determinant:

det
(
V − E(1)

n I
)
= 0 (6)

In matrix form: ∣∣∣∣∣∣∣∣∣
V11 − E

(1)
n V12 · · · V1gn

V21 V22 − E
(1)
n · · · V2gn

...
...

. . .
...

Vgn1 Vgn2 · · · Vgngn − E
(1)
n

∣∣∣∣∣∣∣∣∣ = 0 (7)

The roots of this secular equation give the first-order energy corrections E
(1)
n , and the

corresponding eigenvectors provide the coefficients c
(0)
i for the zeroth-order wave function

corrections.
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2 12.

2.1 Einstein’s Theory of Radiation

Einstein’s theory of radiation describes the interaction between atoms and electromag-
netic radiation through three fundamental processes:

2.1.1 Induced Absorption

When an atom in a lower energy state |i⟩ absorbs a photon and transitions to a higher
energy state |f⟩:

Rate of absorption = Bifρ(ωfi)Ni (8)

where:

• Bif is the Einstein coefficient for induced absorption

• ρ(ωfi) is the energy density of radiation at frequency ωfi = (Ef − Ei)/ℏ

• Ni is the population of the initial state

2.1.2 Induced Emission (Stimulated Emission)

When an atom in a higher energy state |f⟩ is stimulated by radiation to emit a photon
and transition to a lower energy state |i⟩:

Rate of stimulated emission = Bfiρ(ωfi)Nf (9)

where Bfi is the Einstein coefficient for induced emission.

2.1.3 Spontaneous Emission

An atom in an excited state can spontaneously emit a photon and decay to a lower energy
state:

Rate of spontaneous emission = AfiNf (10)

where Afi is the Einstein coefficient for spontaneous emission.

2.2 Reason for Spontaneous Transitions

Spontaneous transitions arise from the quantum mechanical nature of the electromagnetic
field. Even in the absence of external radiation, quantum field theory shows that the
electromagnetic field has zero-point fluctuations (vacuum fluctuations). These vacuum
fluctuations provide the mechanism for spontaneous emission, as the atom can couple to
these virtual photons in the vacuum state.

The spontaneous emission rate is given by:

Afi =
ω3
fi

3πϵ0ℏc3
| ⟨f | d̂ |i⟩ |2 (11)

where d̂ is the electric dipole moment operator.
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2.3 Energy Emission vs. Absorption

Spontaneous transitions are related to energy emission only. In spontaneous emission, an
excited atom loses energy by emitting a photon and transitioning to a lower energy state.
There is no spontaneous absorption process because it would violate energy conservation
(an atom cannot spontaneously gain energy from the vacuum).

2.4 Relation Between Spontaneous and Induced Transitions

The Einstein coefficients are related through detailed balance and thermodynamic equi-
librium considerations:

Bif = Bfi (12)

Afi =
ℏω3

fi

π2c3
Bfi (13)

The transition probabilities are:

Pabsorption = Bifρ(ωfi)∆t (14)

Pstimulated emission = Bfiρ(ωfi)∆t (15)

Pspontaneous emission = Afi∆t (16)

The ratio of spontaneous to stimulated emission rates is:

Afi

Bfiρ(ωfi)
=

ℏω3
fi

π2c3ρ(ωfi)
(17)

This ratio increases with frequency cubed, explaining why spontaneous emission dom-
inates at high frequencies (optical transitions), while stimulated processes dominate at
low frequencies (radio transitions).

3 15.

3.1 Classical Schrödinger Equation

The time-dependent Schrödinger equation is:

iℏ
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (18)

For a free particle, the Hamiltonian is:

Ĥ =
p̂2

2m
= − ℏ2

2m
∇2 (19)

Key characteristics:

• First-order in time derivative

• Second-order in spatial derivatives

• Non-relativistic (valid for v ≪ c)

• Single-component wave function

• Describes spin-0 particles naturally
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3.2 Dirac Equation

The Dirac equation is:
(iγµ∂µ −mc/ℏ)Ψ = 0 (20)

or in explicit form:

iℏ
∂Ψ

∂t
= (cα · p̂+ βmc2)Ψ (21)

where α and β are 4× 4 Dirac matrices, and Ψ is a four-component spinor.
Key characteristics:

• First-order in both time and spatial derivatives

• Fully relativistic

• Four-component wave function (spinor)

• Naturally incorporates spin-1/2

• Predicts antiparticles

• Reduces to Schrödinger equation in non-relativistic limit

3.3 Main Differences

1. Relativistic vs. Non-relativistic: Dirac equation is fully relativistic, while
Schrödinger is non-relativistic

2. Spin: Dirac naturally incorporates spin-1/2, Schrödinger requires ad-hoc addition
of spin

3. Wave function components: Schrödinger uses single-component wave functions,
Dirac uses four-component spinors

4. Antiparticles: Dirac predicts existence of antiparticles, Schrödinger does not

5. Energy spectrum: Dirac allows negative energy solutions, leading to the concept
of the Dirac sea

6. Mathematical structure: Dirac is first-order differential equation, Schrödinger
is second-order in space

The Dirac equation reduces to the Schrödinger equation in the non-relativistic limit
when particle velocities are much smaller than the speed of light.
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