Loengud 14-16 Vastused

Aisha

Juuni 2025

6. Zeeman effect. Energy and wavefunction correction

In a weak magnetic field $\mathbf{B} = B\hat{z}$, the perturbation Hamiltonian is:

$$H' = \frac{e}{2m} (\mathbf{L} + g_s \mathbf{S}) \cdot \mathbf{B},$$

with $g_s \approx 2$ and $\mu_B = \frac{e\hbar}{2m}$. The first-order energy correction for a state $|n, \ell, s, j, m_j\rangle$ is:

$$\Delta E^{(1)} = \mu_B g_j m_j B,$$

where the Landé g-factor is:

$$g_j = 1 + \frac{j(j+1) + s(s+1) - \ell(\ell+1)}{2j(j+1)}.$$

The wavefunction correction is:

$$|\psi^{(1)}\rangle = \sum_{n' \neq n} \frac{\langle n'|H'|n\rangle}{E_n^{(0)} - E_{n'}^{(0)}} |n'\rangle,$$

a standard first-order perturbative expansion mixing nearby states.

12. Einstein's theory of radiation

Einstein introduced transition rates between two levels E_1 and E_2 : Spontaneous emission:

 $P_{spont} = A_{21},$

Induced emission:

 $P_{ind} = B_{21}\rho(\nu),$

Absorption:

$$P_{abs} = B_{12}\rho(\nu),$$

Kus on selgitus?

where $\rho(\nu)$ is the energy density of the radiation field.

Spontaneous emission is due to vacuum fluctuations and always results in photon emission. It is not related to absorption. In thermal equilibrium:

$$\frac{A_{21}}{B_{21}} = \frac{8\pi h\nu^3}{c^3}, \quad B_{12} = B_{21}.$$

13. Spin-statistics theorem

Spin determines the symmetry of multiparticle wavefunctions. Fermions (electrons) cannot occupy the same state (Pauli exclusion), while bosons can (photons in a laser beam).

Kus n valemid?

5