
Question 5: Stark effect. Derive a correction of energy

and wavefunction.

The unperturbed Hamiltonian of the hydrogen atom is:

H0 = − ℏ2

2m
∇2 − e2

4πε0r
(1)

The eigenstates of H0 are given by the hydrogen wavefunctions ψnℓm, with energies:

E(0)
n = −13.6 eV

n2
(2)

An external uniform electric field E⃗ = Eẑ adds a perturbation:

H ′ = eEz = eEr cos θ (3)

The first-order correction to the energy is:

E(1)
n = ⟨nℓm|H ′|nℓm⟩ (4)

For n = 1, ℓ = 0: Since ψ100 is spherically symmetric, the integrand involves cos θ, which is
odd over the sphere:

E
(1)
1 = eE ⟨100|z|100⟩ = 0 (5)

So, no linear Stark effect for the ground state.

The n = 2 level has 4 degenerate states: ψ200, ψ210, ψ211, ψ21−1. Since the perturbation
can mix these, we must diagonalize H ′ in this subspace.

The matrix elements of H ′ = eEz are computed between these 4 states. Only the matrix
elements between ψ200 and ψ210 are non-zero:

⟨200|H ′|210⟩ = ⟨210|H ′|200⟩ = −3ea0E (6)

where a0 is the Bohr radius.
So, in the basis {ψ200, ψ210}, the perturbation matrix is:

H ′ =

(
0 −3ea0E

−3ea0E 0

)
The eigenvalues of this matrix give the first-order energy corrections:

E(1) = ±3ea0E

So the energy levels split linearly with E: this is the linear Stark effect.
For non-degenerate states, the first-order correction to the wavefunction is:∣∣n(1)

〉
=

∑
k ̸=n

⟨k|H ′|n⟩
E

(0)
n − E

(0)
k

|k⟩ (7)

For ψ100, the dominant contribution comes from ψ210:

|1s⟩(1) ≈ ⟨210|eEz|100⟩
E

(0)
1 − E

(0)
2

|210⟩

1
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We have two orbitals 2s and 2d.
If we ignore the states associated with spin, then 
the total number of states to consider is four. 
It means that we need to calculate  the correction 
of energy  for each state (total number of corrections is 4!!! not 2) 
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The secular equation is of order 4, not 2.
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Question 7:

Stationary Case
Equation (a) is the time-independent Schrödinger equation with eigenstates φ0

n and en-
ergies E0

n. The solution to the time-dependent Schrödinger equation (b) in the absence of
perturbation is:

ψ0
n(t) = φ0

n e
−iE0

nt/ℏ (8)

This shows that the time evolution of a stationary state is simply a phase factor multi-
plying the spatial part φ0

n.

Relation Between φ0
n and ψ0

n

From the equation above, we see:

ψ0
n(t) = φ0

n e
−iE0

nt/ℏ

So, φ0
n is the time-independent spatial part, and ψ0

n(t) is the full time-dependent wavefunc-
tion.

Time-Dependent Perturbation
When a time-dependent perturbation Ĥ ′(t) is added, the total Hamiltonian becomes:

Ĥ(t) = Ĥ0 + Ĥ ′(t)

and the full Schrödinger equation becomes:

iℏ
d

dt
ψn(t) =

(
Ĥ0 + Ĥ ′(t)

)
ψn(t)

To solve this, we express the wavefunction as a linear combination of the unperturbed
eigenstates:

ψ(t) =
∑
n

cn(t)φ
0
n e

−iE0
nt/ℏ (9)

Here, cn(t) are time-dependent coefficients that encode transitions between states due to
the perturbation Ĥ ′(t).
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Question 13: What is the meaning of the theorem on

the relationship between spin and statistics?

The Statement of the Theorem

• Particles with integer spin (s = 0, 1, 2, . . . ) are called bosons and obey Bose-Einstein
statistics.

• Particles with half-integer spin (s = 1
2
, 3
2
, . . . ) are called fermions and obey Fermi-Dirac

statistics.

Implications

• Fermions satisfy the Pauli exclusion principle: no two identical fermions can occupy
the same quantum state. This principle explains the structure of the periodic table
and the stability of matter.

• Bosons, on the other hand, can occupy the same quantum state, which leads to phe-
nomena such as Bose-Einstein condensation and the operation of lasers.

Origin of the Theorem
The theorem is not derivable from non-relativistic quantum mechanics. It is a conse-

quence of:

• Lorentz invariance (special relativity),

• Locality (no instantaneous action at a distance),

• Positive energy (the ground state energy is bounded from below).

In relativistic quantum field theory, the symmetry properties of the wavefunction under
exchange of identical particles are directly related to their spin:

• Fermions: antisymmetric wavefunction under exchange.

• Bosons: symmetric wavefunction under exchange.

Summary Table

Spin Type Statistics Behavior
0, 1, 2, . . . Bosons Bose-Einstein Can occupy same state
1
2
, 3
2
, . . . Fermions Fermi-Dirac Obey Pauli exclusion
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