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Control Questions of Lectures 14 to 16 75
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1 Question 6

The interaction of a magnetic dipole moment with an external magnetic field is given by:
H =—-u-B
For an electron, the magnetic moment is:

e L+ ¢S eh
L+¢.S) = —pup—r92 -
Qme< + gsS) HB— 1B .

n=-

Assuming a uniform magnetic field in the z-direction, B = Bz:

LZ + gSSZ

HII/J,BB 3

Special cases:

e Normal Zeeman Effect (no spin): H' = upBL=

e Anomalous Zeeman Effect (includes spin): H' = upB%42%=  (using g, ~ 2)

e LS-coupling / fine structure:

J
H' = nupB 957

where the Landé g-factor is

JG+1) +s(s+1)—Ll+1)
2j(j +1) ’

g; =1+ (for LS-coupling)

From time-independent perturbation theory, the first-order energy correction is:
ABY = (O 1 [p)

Depending on the basis, this becomes:
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my, normal Zeeman effect
AEW = upB X < my+ 2m,, anomalous Zeeman effect

gsms;, fine structure states
The first-order correction to the wavefunction is:

(k|H'|n)
[0 = 37—y )
k; £O E]io)

Since H' is diagonal in the basis [nfmyms) or |nlsjm;), the matrix elements (k|H'|n)
vanish for k # n. Therefore:
= [y =0

Thus, the eigenstates of Hy remain eigenstates of the total Hamiltonian to first order in
B.

The second-order correction to energy is:
2
e
kn n” — By

This includes off-diagonal matrix elements and contributes to the quadratic Zeeman
effect.

2 Question 11

Fermi’s Golden Rule

The transition rate from an initial state |i) to a final state |f) under a time-dependent

perturbation H’ is given by:
2m A
— | (1 'l4)

Wiy = p(Ey) (Fermi’s Golden Rule)

’2
where:

e H'is the perturbation Hamiltonian (e.g., due to an external EM field),
o p(Ey) is the density of final states at energy Ey,

o (f|H'li) is the transition matrix element.

Harmonic Oscillator in Electromagnetic Field

Unperturbed Hamiltonian:

A2

]:10:%4—577%}@
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Eigenstates: |n) with energies E, = hw (n + 3)

Perturbation: .
H'(t) = —qiEy cos(wt) = —%i‘(em it

Matrix Element:

h
(n+1|&n) =1/ =—Vn+1 or n
2mw

Selection Rule:
An = +£1

Transition Probability:

2T R
| Z— f\—qu (n %+ 1|2n)?6(Epsr — B, £ hw)

Hydrogen Atom in Electromagnetic Field

Unperturbed Hamiltonian: Hydrogen atom eigenstates: |n, ¢, m) with energies

13.6eV

E, =
n2

Perturbation (Dipole Approximation):

]:I/(t> — —ef- EO cos(wt) = _gﬁ’, E’O(eiwt et

Matrix Element: R
' 0, m'|Fin, £,m)

Selection Rules for Electric Dipole Transitions:

Kust see tuleb?
/

Al =1
Am =0, £1

Parity must change (i.e., f — ¢+ 1)

An unrestricted (energy conservation)

Transition Probability:

2T o= ]2
WHfIf (fl—er- Eoli)| 0(Ef — E; — hw)

3 Question 14
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Aspect

Schrodinger Equation

Klein—Gordon Equation

Equation

ih9% = — 122 4 vy

2.2

2
(éa%_v2+mh2c)¢:0

Relativity

Non-relativistic. Galilean
invariant.

Fully relativistic. Lorentz
invariant.

Time Derivatives

First-order in time: requires (o).

Second-order in time: requires

@(to) and Orp(to).

Space Derivatives

Second-order Laplacian V2.

Same: second-order V2 in wave
equation form.

Probability
Interpretation

p=IY*>0

p= %W op — $O9"),
conserved via 0yp + V - j =0, but

can be negative

Spin Content

Describes spin-0; spin-3 requires
Pauli or Dirac.

Describes relativistic spin-0
bosons.

Energy Spectrum

Single branch: F = %, bounded
below.

Two branches:
E = 4++/p%c? + m2ct.

Dispersion Relation = % w? = k% + m;204.
Lagrangian No Lorentz-invariant form. L= %a,@a% — %m202¢2.
Antiparticles No antiparticles. Negative energy = antiparticles

appear naturally.

Low-Energy Limit

Base non-relativistic quantum
theory.

Reduces to Schrodinger for v < c.

Field Quantization

Y is single-particle wavefunction.

¢ — ¢E: needs field quantization.

Typical Use Cases

Atoms, molecules, condensed
matter.

Relativistic scalar QFT: pions,
Higgs, inflation fields.




