
Problem 6: Simultaneous Measurement of L̂2 and
L̂x

We need to determine whether the operators L̂2 and L̂x can be measured simul-
taneously.

For two observables to be simultaneously measurable, their corresponding
operators must commute. Thus, we need to check whether [L̂2, L̂x] = 0.

Let’s calculate this commutator:
[L̂2, L̂x] = L̂2L̂x − L̂xL̂
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Since L̂2 = L̂2
x + L̂2

y + L̂2
z, we can write:

[L̂2, L̂x] = [L̂2
x + L̂2

y + L̂2
z, L̂x]

= [L̂2
x, L̂x] + [L̂2

y, L̂x] + [L̂2
z, L̂x]

The first term [L̂2
x, L̂x] = 0 since an operator commutes with itself and its

powers.
For the remaining terms, we need the angular momentum commutation re-

lations: [L̂i, L̂j ] = iℏϵijkL̂k

For [L̂2
y, L̂x], we use the identity [A2, B] = A[A,B] + [A,B]A:

[L̂2
y, L̂x] = L̂y[L̂y, L̂x] + [L̂y, L̂x]L̂y

= L̂y(iℏL̂z) + (iℏL̂z)L̂y

= iℏ(L̂yL̂z + L̂zL̂y)

Similarly: [L̂2
z, L̂x] = L̂z[L̂z, L̂x] + [L̂z, L̂x]L̂z

= L̂z(−iℏL̂y) + (−iℏL̂y)L̂z

= −iℏ(L̂zL̂y + L̂yL̂z)

Therefore: [L̂2, L̂x] = 0 + iℏ(L̂yL̂z + L̂zL̂y)− iℏ(L̂zL̂y + L̂yL̂z) = 0

This proves that [L̂2, L̂x] = 0, meaning that L̂2 and L̂x can be measured
simultaneously. The same would be true for L̂2 and any component L̂i.

Problem 16: Angle Between Angular Momentum
Vector and z-axis

In classical mechanics, if we have a vector L⃗ with a z-component Lz, the angle
θ between L⃗ and the z-axis is given by:

cos θ = Lz

|L⃗|
In quantum mechanics, we cannot specify the exact direction of the angular

momentum vector due to the uncertainty principle. However, we can calculate
the expectation value of cos θ:

⟨cos θ⟩ = ⟨L̂z⟩√
⟨L̂2⟩

For an eigenstate of L̂2 and L̂z with quantum numbers l and m, we have:
L̂2|l,m⟩ = l(l + 1)ℏ2|l,m⟩ L̂z|l,m⟩ = mℏ|l,m⟩
Therefore: ⟨cos θ⟩ = mℏ√

l(l+1)ℏ
= m√

l(l+1)

For 3d orbitals, l = 2.
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Case 1: m = −2 ⟨cos θ⟩ = −2√
2(2+1)

= −2√
6

= − 2
√
6

6 ≈ −0.8165 θ ≈

cos−1(−0.8165) ≈ 144.7◦

Case 2: m = +1 ⟨cos θ⟩ = 1√
2(2+1)

= 1√
6
=

√
6
6 ≈ 0.4082 θ ≈ cos−1(0.4082) ≈

65.9◦

Problem 26: Ionization Energy Calculation

The ionization energy is the energy required to remove an electron from a bound
state to infinity (where the potential energy is zero).

For a hydrogen-like atom with nuclear charge Z, the energy of an electron
in state n is:

En = − Z2e2

8πϵ0a0
· 1
n2 = −Z2Ry

n2

where Ry = e2

8πϵ0a0
≈ 13.6 eV is the Rydberg energy.

The ionization energy for an electron in state n is:

In = E∞ − En = 0− (−Z2Ry
n2 ) = Z2Ry

n2

For hydrogen (Z = 1):
1. 3s state (n = 3, l = 0): I3s =

Ry
32 = 13.6 eV

9 ≈ 1.51 eV

2. 4p state (n = 4, l = 1): I4p = Ry
42 = 13.6 eV

16 ≈ 0.85 eV
For multi-electron atoms, we would need to consider electron-electron in-

teractions and use effective nuclear charge or apply other quantum chemistry
methods.

Problem 39: Eigenvalue Problem for Orbital Mag-
netic Moment

The orbital magnetic moment operator is related to the angular momentum
operator by:

ˆ⃗µl = − e
2me

ˆ⃗
L

where e is the elementary charge and me is the electron mass.
The square of the orbital magnetic moment operator is:
µ̂2
l = ( e

2me
)2L̂2

Since this is proportional to L̂2, they share the same eigenfunctions, which
are the spherical harmonics Ylm(θ, ϕ).

The eigenvalue problem is:
µ̂2
lΨnlm(r⃗) = µ2

lΨnlm(r⃗)
where Ψnlm(r⃗) = Rnl(r)Ylm(θ, ϕ) are the hydrogen atom wavefunctions.
The eigenvalues are:
µ2
l = ( e

2me
)2l(l + 1)ℏ2 = (µB

ℏ )2l(l + 1)ℏ2 = µ2
Bl(l + 1)

where µB = eℏ
2me

is the Bohr magneton.

Therefore, the eigenfunctions of µ̂2
l are the hydrogen atom wavefunctions

Ψnlm(r⃗), and the eigenvalues are µ2
Bl(l + 1).
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Problem 43: Second Order Approximation Equa-
tion Proof

We need to prove the equation:
∑

k ̸=n |a
(1)
k |2 + (a

(2)∗
n + a

(2)
n ) = 0

This equation appears in time-independent perturbation theory. Let’s start
with the normalization condition up to second order:

⟨ψ|ψ⟩ = 1
Where |ψ⟩ = |ψ(0)⟩+ λ|ψ(1)⟩+ λ2|ψ(2)⟩+ ...
If we expand |ψ⟩ in terms of the unperturbed eigenstates {|n⟩}:
|ψ⟩ =

∑
k ck|k⟩

where ck = c
(0)
k + λc

(1)
k + λ2c

(2)
k + ...

Assuming |ψ(0)⟩ = |n⟩, we have c
(0)
k = δkn.

The first-order coefficient c
(1)
k corresponds to a

(1)
k in the problem statement,

and similarly c
(2)
k corresponds to a

(2)
k .

The normalization condition gives: ⟨ψ|ψ⟩ =
∑

k |ck|2 = 1

Expanding |ck|2 to second order: |ck|2 = |c(0)k + λc
(1)
k + λ2c

(2)
k |2 +O(λ3)

For k ̸= n, c
(0)
k = 0, so: |ck|2 = |λc(1)k + λ2c

(2)
k |2 +O(λ3) = λ2|c(1)k |2 +O(λ3)

For k = n, c
(0)
n = 1, so: |cn|2 = |1 + λc

(1)
n + λ2c

(2)
n |2 +O(λ3) = 1 + λ(c

(1)∗
n +

c
(1)
n ) + λ2(|c(1)n |2 + c

(2)∗
n + c

(2)
n ) +O(λ3)

Now, the normalization condition becomes: 1 =
∑

k ̸=n λ
2|c(1)k |2+1+λ(c

(1)∗
n +

c
(1)
n ) + λ2(|c(1)n |2 + c

(2)∗
n + c

(2)
n ) +O(λ3)

Comparing coefficients of λ: λ1 : c
(1)∗
n + c

(1)
n = 0 (which means c

(1)
n is purely

imaginary)

Comparing coefficients of λ2:
∑

k ̸=n |c
(1)
k |2 + |c(1)n |2 + c

(2)∗
n + c

(2)
n = 0

Since c
(1)
n is purely imaginary, |c(1)n |2 = −c(1)∗n c

(1)
n = 0

Therefore:
∑

k ̸=n |c
(1)
k |2 + c

(2)∗
n + c

(2)
n = 0

Using the notation from the problem statement:
∑

k ̸=n |a
(1)
k |2 + (a

(2)∗
n +

a
(2)
n ) = 0
This completes the proof.
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