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Problem 6: Simultaneous Measurement of L? and
L,
We need to determine whether the operators L? and L, can be measured simul-
taneously.

For two observables to be simultaneously measurable, their corresponding

operators must commute. Thus, we need to check whether [ﬁQ, f/z] =0.
Let’s calculate this commutator:

[2,1,) = [2L, — 1,1

Since L? = L2 + LZQI + L2, we can write:

(L2, Ly] = [L2 + L2 + L2, L)

= [iﬁ»i ]+ [Li,ﬁ ]+ [£Zvir]

The first term [L2, L,] = 0 since an operator commutes with itself and its
powers.

For the remaining terms, we need the angular momentum commutation re-
lations: [LZ,LJ] = ’iheijkLk

For [L2, L], we use the identity [A2, B] = A[A, B] + [A, B]A:

(L5 La) = Ly[Ly, La] + [Ly, LaLy

= Ly(ihL.) + (ihL.)L,

= ih(LyL, + L.L,)

Similarly: [L2, L,] = L.[L., Ls] + (L., Ls] L.

= L.(—ihLy) + ( ihL y) L

= —il(L,Ly, + L,L.)

Therefore: [L?, L i o) =04 i(LyL. + L.Ly) —ih(L.Ly + LyL.) = 0

This proves that [L2, L,] = 0, meaning that L? and L, can be ‘measured
simultaneously. The same would be true for L? and any component L;.

Problem 16: Angle Between Angular Momentum
Vector and z-axis

In classical mechanics, if we have a vector L with a z-component L., the angle
0 between L and the z-axis is given by:

cosf = |LT\

In quantum mechanics, we cannot specify the exact direction of the angular
momentum vector due to the uncertainty principle. However, we can calculate

the expectation value of cos6:

_ (Ls)
(cosb) = =5

For an eigenstate of L2 anq L. with quantum numbers [ and m, we have:
L2, m) = 1(1+ 1)R2|l,m) L |l m) = mh|l, m)
mh m
Therefore: (cosf) = T~ Vi 20
For 3d orbitals, [ = 2.
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Case 1: m = —2 (cosl) = —(—=2— = ;é = —% ~ —0.8165 0 =
cos~1(—0.8165) ~ 144.7°

Case2: m = +1 (cos ) = ——t— = - = ¥0 ~ 0.4082 6 ~ cos~1(0.4082) ~
65.9°

Problem 26: Ionization Energy Calculation

The ionization energy is the energy required to remove an electron from a bound
state to infinity (where the potential energy is zero).

For a hydrogen-like atom with nuclear charge Z, the energy of an electron
in state n is:

o Z2 2 1 Z2R
En*fgﬂ.eoeao 27L7277 n2y 20
where Ry = &Tim ~ 13.6 eV is the Rydberg energy.

The ionization energy for an electron in state n is:

I,=Fo—E,=0— (-Z8uy - 21

For hydrogen (Z = 1):

1. 3s state (n =3,1=0): I35 = % =130V ~ 151 eV

2. dp state (n =4, [ =1): Iy, = % % ~ 0.85 eV

For multi-electron atoms, we would need to consider electron-electron in-
teractions and use effective nuclear charge or apply other quantum chemistry
methods.

Problem 39: Eigenvalue Problem for Orbital Mag-
netic Moment

The orbital magnetic moment operator is related to the angular momentum
operator by:

=

fir = — 2;16 L
where e is the elementary charge and m. is the electron mass.

The square of the orbital magnetic moment operator is:
it = (g5:)°L?

2mee

Since this is proportional to ﬁz, they share the same eigenfunctions, which
are the spherical harmonics ¥, (6, ¢).

The eigenvalue problem is:

ﬂlQ\I/nlm(F) = H%qlnlm(f')

where U1, (7) = Rni(r)Yim (0, ¢) are the hydrogen atom wavefunctions.

The eigenvalues are:

i = (55 )21+ DA% = (52211 + 1)h? = pigl(l+1)

where pup = % is the Bohr magneton.

Therefore, the eigenfunctions of ,&lz are the hydrogen atom wavefunctions
U, (7), and the eigenvalues are p%l(1 + 1).
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Problem 43: Second Order Approximation Equa-

tion Proof

We need to prove the equation: -, \ag) 12 + (ag)* + ag)) =0

This equation appears in time-independent perturbation theory. Let
with the normalization condition up to second order:

() = 1

Where [0) = [¢(O) + XpD) + A2|p2)) + .

If we expand [¢) in terms of the unperturbed eigenstates {|n)}:

) = 2k cklk)

where ¢, = c,(fo) + )\cg) + )\QCg) + ...

Assuming [¢(©)) = |n), we have c,(co) = Skn.-

(1) 1)

’s start

20

The first-order coefficient ¢, ’ corresponds to @, ’ in the problem statement,

and similarly c,(f) corresponds to a,(f).

The normalization condition gives: (¢|¢p) = >, |ex|*> =1

Expanding |cx|? to second order: |c|? = \c,(go) + )\cg) + )\2022)|2 +0(N\?)
For k # n, c,(go) =0, so: |ex? = |)\c,(€1) + /\201(5)‘2 +0(\3) = )\2\0,(;)\2 +O0(N\3)
For k =n, ¢ =1, so: len]? = 11+ et + )\2022)\2 +O0N\3) =1+ )\(csll)* +

)+ 22 ([P 4 e+ ) + 0N
Now, the normalization condition becomes: 1 =37, )\2|C§€1) I2+1+A

o)+ 22(|e 2 + P+ ) + O
(1)

(P +

Comparing coefficients of A: A! : cg)* + c§}) = 0 (which means ¢, is purely

imaginary)
Comparing coefficients of \%: > ktn |c,(€1) % + |c$11)|2 T+ 4P =0
Since c%l) is purely imaginary, |c$L1
Therefore: >, |c§€1)|2 +cP 4P =0
Using the notation from the problem statement: >, . \a,(:)\Q + (
an)) =0
This completes the proof.

2 = D7) — g
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