
Mirtel Toming 233465YAFB

2. Derive expressions for the projections of the
angular momentum operators

The angular momentum operator in quantum mechanics is defined as:

ˆ⃗
L = ˆ⃗r × ˆ⃗p,

where ˆ⃗r = (x, y, z) is the position operator and ˆ⃗p = −ih̄∇ is the momentum
operator.

Using the cross product, the components of the angular momentum operator
are given by:

L̂x = yp̂z − zp̂y, L̂y = zp̂x − xp̂z, L̂z = xp̂y − yp̂x.

Substituting p̂x = −ih̄ ∂
∂x , p̂y = −ih̄ ∂

∂y , and p̂z = −ih̄ ∂
∂z , we get:

L̂x = −ih̄
(
y
∂

∂z
− z

∂

∂y

)
,

L̂y = −ih̄
(
z
∂

∂x
− x

∂

∂z

)
,

L̂z = −ih̄
(
x
∂

∂y
− y

∂

∂x

)
.

16. How in quantum mechanics can be calculated
the angle between the angular momentum vector
L⃗ and the z-axis? Calculate the values of this
angle for magnetic quantum numbers m = −2 and
+1 for 3d orbitals.

In quantum mechanics, the angle θ between the angular momentum vector L⃗
and the z-axis is found using the relation:

cos θ =
Lz∣∣∣L⃗∣∣∣

However, because L⃗ and Lz are operators with quantized eigenvalues, we
instead use:

cos θ =
⟨Lz⟩√
⟨L⃗2⟩

=
mh̄√
l(l + 1)h̄

=
m√
l(l + 1)
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For 3d orbitals, the orbital quantum number is l = 2.
Case 1: m = −2

cos θ =
−2√

2(2 + 1)
=

−2√
6
= −

√
6

3

θ = cos−1

(
−
√
6

3

)
≈ 144.7◦

Case 2: m = +1

cos θ =
1√
6
≈ 0.408

θ = cos−1(0.408) ≈ 66.4◦

20. Obtain the equation for radial part of wave
function

Schrödinger equation for the hydrogen atom in spherical coordinates:

− h̄2

2M

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− 1

h̄2r2
L̂2 − 2M

h̄2
U(r)

]
ψnlm(r⃗) = Eψnlm(r⃗),

where:
ψnlm(r⃗) = Rnl(r)Ylm(θ, ϕ).

The angular momentum operator L̂2 acts only on the angular part Ylm, and
satisfies:

L̂2Ylm = h̄2l(l + 1)Ylm.

Substituting the form ψnlm(r⃗) = Rnl(r)Ylm(θ, ϕ) into the equation:

− h̄2

2M

[
1

r2
d

dr

(
r2
dRnl(r)

dr

)
Ylm − l(l + 1)

r2
Rnl(r)Ylm − 2M

h̄2
U(r)Rnl(r)Ylm

]
= ERnl(r)Ylm.

distributing − h̄2

2M to each term:

− h̄2

2M
· 1

r2
d

dr

(
r2
dRnl

dr

)
Ylm +

h̄2l(l + 1)

2Mr2
RnlYlm + U(r)RnlYlm = ERnlYlm.

Dividing both sides by Ylm, we get the radial part of the equation:

− h̄2

2M

[
1

r2
d

dr

(
r2
dRnl(r)

dr

)]
+

[
h̄2l(l + 1)

2Mr2
+ U(r)

]
Rnl(r) = ERnl(r).
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31. Calculate the possible maximum number of
electrons in 4p and 2d orbitals for hydrogen atom.

Each orbital is characterized by quantum numbers:

• Principal quantum number n

• Orbital quantum number l

• Magnetic quantum number m = −l, . . . ,+l (total 2l + 1 values)

• Each orbital can hold 2 electrons (due to spin quantum number s = ± 1
2 )

For 4p orbital:

• n = 4, l = 1

• Number of orbitals: 2l + 1 = 3

• Maximum number of electrons: 3× 2 = 6

For 2d orbital:

• n = 2, l = 2

• But values of l must satisfy l + 1 ≤ n, so l = 2 is not allowed for n = 2
therefore, the 2d orbital does not exist

40. Write the Schrödinger equation for third or-
der approximation of perturbation theory.

In time-dependent perturbation theory, we write the total wave function as:

Ψ(t) =
∑
n

cn(t)e
−iEnt/h̄ψn,

where cn(t) are time-dependent coefficients, and ψn are eigenfunctions of the
unperturbed Hamiltonian Ĥ0:

Ĥ0ψn = Enψn.

When a time-dependent perturbation Ĥ ′(t) is applied, the total Hamiltonian
becomes:

Ĥ(t) = Ĥ0 + Ĥ ′(t).

We expand the coefficients cn(t) as a power series:

cn(t) = c(0)n + c(1)n (t) + c(2)n (t) + c(3)n (t) + · · · ,

where c
(k)
n (t) is the k-th order correction.
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From perturbation theory, the differential equation for cm(t) is:

ih̄
dcm(t)

dt
=
∑
n

H ′
mn(t)e

iωmntcn(t), where ωmn =
Em − En

h̄
.

Substituting the expansion of cn(t), we collect terms order by order. The
third-order approximation is given by:

ih̄
dc

(3)
m (t)

dt
=
∑
n

H ′
mn(t)e

iωmntc(2)n (t),

where c
(2)
n (t) is the second-order correction obtained from the previous step.
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