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7. Is it possible measure simultaneously absolute value of angular momentum |L⃗| and its
x projection? Why? Proof.

Yes. The operators L̂2 = L̂2
x + L̂2

y + L̂2
z, L̂x commute:[

L̂2, L̂x

]
=

[
L̂2
x, L̂x

]
+

[
L̂2
y, L̂x

]
+

[
L̂2
z, L̂x

]
.

Since [L̂2
x, L̂x] = 0 and using commutation relations [L̂y, L̂x] = iℏ L̂z, [L̂z, L̂x] = −iℏ L̂y :

[L̂2
y, L̂x] = L̂y[L̂y, L̂x] + [L̂y, L̂x]L̂y = iℏ

(
L̂yL̂z + L̂zL̂y

)
,

[L̂2
z, L̂x] = L̂z[L̂z, L̂x] + [L̂z, L̂x]L̂z = −iℏ

(
L̂zL̂y + L̂yL̂z

)
,

so that [L̂2
y, L̂x] + [L̂2

z, L̂x] = 0 and hence [L̂2, L̂x] = 0. Commuting observables have a common

eigenbasis {|l,mx⟩} with L̂2|l,mx⟩ = ℏ2 l(l+1) |l,mx⟩ and L̂x|l,mx⟩ = ℏmx |l,mx⟩, so L = |L⃗| and
Lx can be measured simultaneously.

13. Write an expression for the x, y and z projection of the angular frequency operators
ω̂x, ω̂y, and ω̂z (the rotating body is a homogeneous sphere of mass M and radius R).

In classical mechanics, the angular momentum vector L⃗ of a rigid body is related to its angular
velocity ω⃗ by the inertia tensor I⃗:

L⃗ = I⃗ ω⃗.

For a homogeneous sphere the inertia tensor becomes scalar,

I =

∫
V

(r sin θ)2ρr2 sin θdrdθdϕ = ρ

∫ R

0

∫ π

0

∫ 2π

0

r4 sin3 θdϕdθdr =

= ρ︸︷︷︸
=M/V

·2π · 4/3 ·R5/5 =
3M · 2π · 4 ·R5

4πR3 · 3 · 5
=

2

5
MR2,

so that
ˆ⃗
L = I ω⃗. In quantum mechanics, the corresponding classical quantities are represented by

operators:
ˆ⃗
L = (L̂x, L̂y, L̂z) and ˆ⃗ω = (ω̂x, ω̂y, ω̂z). Since I⃗ = I 1⃗, it follows that ˆ⃗ω =

ˆ⃗
L
I . Hence, each

component of the angular velocity operator is proportional to the corresponding component of the
angular momentum operator:

ω̂x =
L̂x

I
, ω̂y =

L̂y

I
, ω̂z =

L̂z

I
.

20. Obtain the equation for radial part of wave function:

− ℏ2

2M

[
1

r2
d

dr

(
r2

dR(r)

dr

)]
+

[
ℏ2 l(l + 1)

2M r2
+ U(r)

]
Rnl(r) = ERnl(r),

Starting from the time–independent Schrödinger equation:

− ℏ2

2M
∇2ψ(r⃗) + U(r)ψ(r⃗) = E ψ(r⃗).

In spherical coordinates:

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
− 1

r2
L̂2
θϕ.
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Separaating the variables:
ψnℓm(r, θ, ϕ) = Rnℓ(r)Yℓm(θ, ϕ),

where Yℓm are spherical harmonics and Rnℓ(r) is purely radial. Substituting into the full equation:

− ℏ2

2M

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− 1

r2
L̂2
θϕ(RY )

]
+ U(r)RY = ERY.

Separating radial and angular parts:

∂

∂r
= Y R′,

∂

∂r

(
r2
∂

∂r

)
= Y

d

dr

(
r2R′) ,

and L̂2
θϕ(RY ) = R L̂2

θϕY. Using the eigenvalue equation for spherical harmonics:

L̂2
θϕYℓm = ℏ2 ℓ(ℓ+ 1)Yℓm, so L̂2

θϕ(RY ) = ℏ2 ℓ(ℓ+ 1)RY.

Substituting and dividing by Y :

− ℏ2

2M

[
1

r2
d

dr

(
r2R′)− ℓ(ℓ+ 1)

r2
R

]
+ U(r)R = ER.

Rearranging to the standard form:

− ℏ2

2M

[
1

r2
d

dr

(
r2

dR

dr

)]
+

[
ℏ2 ℓ(ℓ+ 1)

2M r2
+ U(r)

]
R(r) = ER(r).

36. How looks like the electron configuration for Li, Na and K atoms? Why? What do
all these materials have in common (in terms of physical properties)? How does this
relate to the configuration of the electrons?

• Lithium (Li, Z = 3): 1s2 2s1.

• Sodium (Na, Z = 11): 1s2 2s2 2p6 3s1.

• Potassium (K, Z = 19): 1s2 2s2 2p6 3s2 3p6 4s1.

Reasons:

• Principle of minimum energy. Electrons fill orbitals in order of increasing energy: E1s < E2s <
E2p < E3s < . . .

• Exclusion principle. Each spatial orbital, specified by the quantum numbers, can accommodate
at most two electrons, and these two must have opposite spin quantum numbers: ms = + 1

2
and ms = − 1

2 .

• Screening and effective nuclear charge. Core electrons generate a spherically symmetric po-
tential that partially screens the nuclear charge. As a result, the valence electron experiences
an effective charge Zeff and moves in a central potential whose energy levels follow the same
ordering derived from the radial Schrödinger equation.

From this it follows that an electron will occupy the first available (lowest-energy) s-orbital of pri-
ncipal quantum number n, yielding the configuration ns1.

Consequences (because of the common valence configuration ns1):

• Low first ionization energy: the lone s–electron is only weakly bound.

• Formation of M+ cations: they readily lose one electron.

• Characteristic group–1 (“alkali metal”) properties: high chemical reactivity, metallic luster,
softness, low melting points and high electrical conductivity.

45. Why for the second-order energy correction of a harmonic oscillator in a constant
force field (p. 129) we need to take into account only two terms of the sum n, n + 1
and n, n− 1.

The perturbation by a constant force F is

Ĥ ′ = F x̂.
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Expressing the position operator in terms of creation and annihilation operators:

x̂ =

√
ℏ

2Mω
(a+ a†).

The perturbation matrix has nonzero elements only between adjacent levels:

⟨k|Ĥ ′|n⟩ = F

√
ℏ

2Mω

(
⟨k| a |n⟩+ ⟨k| a† |n⟩

)
Since

a |n⟩ =
√
n |n− 1⟩ , a† |n⟩ =

√
n+ 1 |n+ 1⟩ ,

It follows that
⟨k|Ĥ ′|n⟩ ≠ 0 =⇒ k = n± 1.

Therefore, the second–order correction

E(2)
n =

∑
k ̸=n

∣∣∣⟨k| Ĥ ′ |n⟩
∣∣∣2

E
(0)
n − E

(0)
k

=
| ⟨n− 1| Ĥ ′ |n⟩ |2

E
(0)
n − E

(0)
n−1

+
| ⟨n+ 1| Ĥ ′ |n⟩ |2

E
(0)
n − E

(0)
n+1

.

thus contains contributions only from k = n+ 1 and k = n− 1, since for all other k the numerator
vanishes.
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